ECE 274 Digital Logic - Spring 2009

Which office hours work best for you?

1. $\mathrm{M} \mathrm{11:00AM} \mathrm{-} \mathrm{12:00PM}$
2. $\mathrm{M} \mathrm{1:30PM}-2: 30 \mathrm{PM}$
3. W 9:00AM - 10:00AM
4. R 8:30AM - 9:30AM
5. R 10:45AM - 11:45AM
6. F 9:00AM - 10:00AM

Copyright © 2007 Frank Vahid

Digital Logic - I ntroduction
Binary - Digital Signals with Only Two Values

o Binary digital signal -- only two

 possible values\square Typically represented as $\mathbf{0}$ and $\mathbf{1}$

- One binary digit is a bit
- We'll only consider binary digital signals

\square Binary is popular because
- Transistors, the basic digital electric component, operate using two voltages
- Storing/transmitting one of two values is easier than three or more (e.g., loud beep or quiet beep, reflection or no reflection)

Digital Logic - Introduction
 How to Encode Numbers: Binary Numbers

- Each position represents a quantity; symbol in position means how many of that

quantity

- Base ten (decima)
- Ten symbols: 0, 1, 2, ..., 8, and 9
- More than 9 -- next position
- So each position power of 10
- Nothing special about base 10 -used because we have 10 fingers
- Base two (binary)
- Two symbols: 0 and 1
- More than 1 -- next position
- So each position power of 2

Digital Logic - Introduction
How to Encode Numbers: Binary Numbers

- Working with binary numbers

$$
\overline{10^{3}} \overline{10^{2}} \overline{10^{1}} \overline{10^{0}}
$$

- In base ten, helps to know powers of 10
- - -

one, ten, hundred thousand, ten thousand, .

- In base two, helps to know powers of 2
- one, two, four, eight, sixteen,
thirty two, sixty four, one hundred twenty eight
- (Note: unlike base ten, we don't
have common names, like
'thousand," for each position in
base ten -- so we use the base
ten name)

Digital Logic - Introduction
 Converting from Decimal to Binary

Digital Logic - Introduction
Converting from Decimal to Binary Numbers

- What is the value of the binary number 100110 in decimal?

- Subtraction Method (Easy for

- Goal: Get the binary weights to add up to the decimal quantity
- Work from left to right
- (Right to left - may fill in 1s that shouldn't have been there - try it). Subtraction method
- Subtract a selected binary weight from the (remaining) quantity
\square Then, we have a new remaining quantity, and we start again (from the present binary position)
- Stop when remaining quantity is 0

Remaining quantity: $\underline{12}$

32	16	8	4	2	1	$\begin{aligned} & 32 \text { is } \\ & \text { too much } \end{aligned}$
1						
32	16	8	4	2	1	
0	1					$\begin{aligned} & 16 \text { is } \\ & \text { too much } \end{aligned}$
32	16	8	4	2	1	
0	0	1				$\underline{12}-8=\underline{4}$
32	16	8	4	2	1	
0	0	1				$\frac{4-4=0}{\text { DONE }}$
32	16	8	4	2	1	
0		1	1	0	0	answer

Digital Logic - Introduction
 Converting from Decimal to Binary

Digital Logic - Introduction
 Converting from Decimal to Binary

- What is the value of the decimal number 25 in binary?
- Division Method (Good for Computers)
- Divide decimal number by 2 and insert remainder into new binary number.
- Continue dividing quotient by 2 until the quotient is 0 .

1. 11000
2. 11001
3. 10111
4. 011001

Digital Logic - Introduction
 Converting from Decimal to Binary

Digital Logic - Introduction
 Converting from Decimal to Binary

- What is the value of the decimal number 54 in binary?
- Example: Convert decimal number 12 to binary (continued)
hat is the value of the decinal number s4 in binary?

$$
\begin{array}{ll}
\text { Decimal Number } \\
2 \sqrt{\frac{1}{3}} \text { divide by } 2 \\
\frac{-2}{1} \xrightarrow[\text { insert remainder }]{ } & \begin{array}{l}
\text { Binary Numbe } \\
4
\end{array} \frac{0}{2} \frac{0}{1} \\
\end{array}
$$

Continue dividing since quotient (1) is greater than 0

Since quotient is 0 , we can conclude that 12 is 1100 in binary

1. 110110
2. 100010
3. 1000010
4. None of the above

Digital Logic - Introduction
 Hexadecimal Numbers

Digital Logic - Introduction
Converting from Hexadecimal to Binary

- Nice because each position represents four base two positions
- Used as compact means to write binary numbers
- Known as hexadecimal, or just hex

1. 10111010
2. 01011011
3. 10101011
4. 10101010

Digital Logic - Introduction
 Converting from Hexadecimal to Decimal

- What is the value of the hexadecimal number 2E in decimal?

1. 101110
2. 00101110
3. 30
4. 46

hex	binary	hex	binary
0	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	в	1011
4	0100	c	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

