ECE 274 Digital Logic — Fall 2008

Sequential Logic Design using Verilog
Verilog for Digital Design Ch. 3

A, ARIZONA.

8 TCSON ARIZONA

Register Behavior

o Sequential circuits have storage

o Register: most common storage component 13 12 11 10

o N-bit register stores N bits

o Structure may consist of connected flip-flops

13 12 11 10
1 1 I 1

-bit register

Lt

D

Register Behavior
Vectors
L1 11
o Typically just describe register 13 12 11 10
behaviorally — reg(4)
o Declare output Q as reg variable st
to achieve storage 03020100
o Uses vector types 1T 11
o Collection of bits

o More convenient than declaring
separate bits like 13, 12, 11, 10

o Vector's bits are numbered
o Options: [0:3], [1:4], etc.
o [3:0]
o Most-significant bit is on left

o Assign with binary constant (more
on next slide)

“timescale 1 ns/1 ns
module Reg4(l, Q, Clk, Rst);

input [3:0] I;
output [3:0] Q;
reg [3:0] Q;

input Clk, Rst;

module Reg4(13,12,11,10,Q3,...); N
input 1, 10; always @(posedge ClIk) begin
if Rst == 1)
Q <= 4°b0000;
else
module Reg4(l, Q, ...); Q<=1;
input [3:0] I; end
1: endmodule
1NN Lol

vldd_ch3_Regd.v

QM QM QM Q
Clk R J__ R R —‘
Py 3 Py
Rst d]
Q3 Q2 Q1 Q0
Register Behavior
Constants
I .|
o Binary constant 13 12 11 10
o 4'b0000 — reg(4)
o 4: size, in number of bits —Rst
o 'b: binary base Q3020100
1

o 0000: binary value
o Other constant bases possible
o d: decimal base, o: octal base, h:
hexadecimal base
o 12'hFA2
o 'h: hexadecimal base
o 12: 3 hex digits require 12 bits
o FA2: hex value
o Size is always in bits, and optional
o 'hFAZ2is OK
o For decimal constant, size and 'd optional
o 8'd255 or just 255
o In previous uses like “A <=1;" 1 and 0
are actually decimal numbers. ‘b1 and ‘b0
would exp%citly represent bits
o Underscores may be inserted into value
for readability
o 12'b1111_1010_0010
o 8_000_000

“timescale 1 ns/1 ns
module Reg4(l, Q, CIk, Rst);

input [3:0] I;
output [3:0] Q;
reg [3:0] Q;

input Clk, Rst;

always @(posedge Clk) begin
if Rst == 1)

Q <= 4°b0000;
else
Q<= 1;
end
endmodule
vldd_ch3_Regd.v

Register Behavior

o Procedure's event control
involves Clk input
o ANotthe | input. Thus,
synchronous
o “"posedge CIk"

o Event is not just any
change on CIk, but
specifically change from 0
to 1 (positive edge)

o negedge also possible

o Process has synchronous
reset

1312 1110
=1 reg(4)

R3020100
I T T 1

“timescale 1 ns/1 ns
module Reg4(l, Q, Clk, Rst);

input [3:0] I;
output [3:0] Q;
reg [3:0] Q;

input Clk, Rst;

always @(posedge Clk) begin
if (Rst == 1)

o Resets output Q only Q <= 4°b0000;
rising edge of Clk m\1Q .

o Process writes output Q

o Q declared as reg variable,
thus stores value too

end
endmodule

vldd_ch3_Regd.v

Register Behavior
Testbench

o reg/wire declarations an
module instantiation
similar to previous
testbenches

o Module uses two
procedures
o One generates 20 ns clock
o 0 for 10 ns, 1 for 10 ns
o Note: always procedure
repeats
o Other provides values for
inputs Rst and 1 (i.e.,
vectors)

o initial procedure executes
just once, does not repeat
o (more on next slide)

“timescale 1 ns/1 ns
module TestbenchQ);
reg [3:0] I_s;
FESTERst_s;
wire [3:0] Q_s;
Reg4 CompToTest(l_s, Q_s, Clk_s, Rst_s);

// Clock Procedure

always begin
Clk_s <= 0;
#10;

Clk_s <= 1;
#10;
end // Note: Procedure repeats

// Vector Procedure

initial begin
Rst_s <= 1;
I_s <= 4"b0000;
@(posedge Clk_s);
#5 Rst_s <= 0;
1_s <= 4"b0000;
@(posedge Clk_s);
#5 Rst_s <= 0;
I_s <= 4"b1010;
@(posedge Clk_s);
#5 Rst_s <= 0;
I_s <= 4"b1111;

end

endmodule

vldd_ch3_RegdTB.v

Register Behavior
Testbench

“timescale 1 ns/1 ns
module Testbench();

reg [3:0] I_s;

o Variables/nets can be shared
between procedures

o Only one procedure should write
to variable

ks, Rst_s;

Jwire [3:0] Q_s;

Reg4 CompToTest(l_s, Q_s, Clk_s, Rst_s);

// Clock Procedure

o Variable can be read by many always begin
procedures f Clk_s <= 0;

o Clock procedure writes to Clk_s
o Vector procedures reads Clk_s
o Event control "@(posedge Clk_s
o May be prepended to statement
to synchronize execution with
event occurrence
o Statement may be just “;" as in
example
o In previous examples, the
“statement” was a sequential
block (begin-end)
o Test vectors thus don't include
the clock’s period hard coded
o Care taken to change input values
away from clock edges

#10;

// Vector Procedure

initial begin

Rst_s <= 1;

1_s <= 4"b0000;

@(posedge Clk_s);

#5 Rst_s <= 0;

1_s <= 4"b0000;

@(posedge Clk_s);

#5 Rst_s <= 0;

1_s <= 4"b1010;

L@(posedge Clk_s);
#5 Rst_s <= 0;
I_s <= 4°b1111;

end
endmodule

vidd_ch3_RegdTB.v

6
Register Behavior
// Vector Procedure
Testbench initial begin
fistys <= 1;
. . 1_s <= 4"b0000;
o Simulation results @(posedge Clk_s);
o Note that Q_s updated only fS Rstfj ;;Og(:)
) s <= 4" H
on rising clock edges @Cposedge Clk_5):
o Note Q_s thus unknown until fS RSLZS‘ ;;O%
) s <= 4" H
first clock edge @(posedge Clk_s);
o Q_s s reset to “0000” on #5 Rst_s <= 0;
first clock edge I_s <= 4"bl111;
end vldd_ch3_Reg4TB.v
clk_s "—
Rsts | | I
s o000 X ool J T um B
always @(posedge Clk) begin
Qisgxxxr 0800 ‘\1 10 @1 if (Rst == 1)
Q <= 47b0000; Remember that Q_s is connected to
else Q, and I_sto I, in the testbench
10 20 40 50 60 70 80 ond Q<=1

time (ns)

vldd_ch3_Regd.v

Initial value of a bit is the
unknown value x

Common Pitfalls

// Vector Procedure

. i L. / always begin
o Using "always" instead of "initial" Rst_s <= 1;

1_s <= 4"b0000;

Common Pitfalls

o Not initializing all module inputs

0 May cause undefined outputs 1/ Vector Procedure

o Or simula?or may ?nitialize to default alwzs begin _
value. Switching simulators may cause I_s <= 4°b0000;
design to fail. @(posedge Clk_s);

o 7ip: Immediately initialize all module @(posedge Clk_s);
inputs when first writing procedure P B

end

prOCedUre @(posedge Clk_s);
o Causes repeated procedure execution @(posedge CIk_s);
. . #5 Rst = 0;
o Not including any delay control or event s i;i-;ml;
control in an always procedure \ ”
o . . 77V Proced
o May cause infinite loop in the simulator Trwye i o
o Simulator executes those statements over F:S?if:-ééooo-
and over, never executing statements end — ’
another procedure
o Simulation time can never advance Clk_s
o Symptom — Simulator appears to just .
hang, generating no waveforms -
I_s
Qs
10 20 30 40 50 60 70 80
time (ns)
9
Common Pitfalls
o Forgetting to explicitly declare as a wire
an identifier used in a port connection
o eg.,Q.s
o Verilog implicitly declares identifier as a
net of the default net type, typically a “timescale 1 ns/1 ns
one-bit wire module Testbench();
o Intended as shortcut to save typing for
large circuits reg [3:0] I_s;
o May not give warning message during Dﬁg C'Eskfssj’fRS;TS;
compilation ’
o Works fine if a one-bit wire was desired Reg4 CompToTest(l_s, Q_s, Clk_s, Rst_s);

o

But may be mismatch — in this example,
the wire should have been four bits, not
one bit
Unexpected simulation results
o Always explicitly declare wires

o Best to avoid use of Verilog's implicit
declaration shortcut

o

11

Finite-State Machines (FSMs)—Sequential Behavior

o Finite-state machine (FSM) is a Inputs: B; Outputs: X
common model of sequential =
behavior

o Example: If B=1, hold X=1 for 3
clock cycles
o Note: Transitions implicitly ANDed
with rising clock edge
o Implementation model has two
parts:

o State register ‘_EVI_) —>
o Combinational logic logic
o HDL model will reflect those two
parts

StateNext

Finite-State Machines (FSMs)—Sequential Behavior
Modules with Multiple Procedures and Shared Variables

‘B . “timescale 1 ns/1 ns
Inputs: B; Outputs: X S onl: begin
module LaserTimer(B, X, Clk, Rst); X <= 1;
StateNext <= S_0n2;
input B; end . .
output reg X; 570"2'7“9'"
input CIk, Rst; X <= 1;
StateNext <= S_O0n3;
parameter S_Off = 0, S_Onl = 1, end N N
S_on2 = 2, S_0n3 = 3; S_0n3: begin
X <= 1;
reg [1:0] State, StateNext; StateNext <= S_OFF;
a end
3| 77 combLogic endcase
3 always @(State, B) begin end
case (State)
S_Off: begin /4 StateReg
T X <= 0: always @(posedge ClIk) begin
i (B == 0) if (Rst == 1)
StateNext <= S_OFF; State <= S_Off;
else else
StateNext <= S Onl: State <= StateNext;
end — 77 end
endmodule
vidd_ch3_LaserTimerBeh.v

13

Finite-State Machines (FSMs)—Sequential Behavior

o Modules has two procedures “timescale 1 ns/1 ns
o One procedure for combinational module LaserTimer(B, X, CIk, Rst);
logic input B;
i tput X3
o One procedure for state register Tnput Clie. Ret:
o Butit's §t||| a behavioral parameter S_OFF = 0, S.0nl = 1,
description S_on2 = 2, S_0n3 = 3;
» " reg [1:0] State, StateNext;
(% ‘gL X= g // CombLogic
— Z 8
ue Com?m_at'onal w 3 always @(State, B) begin
ogic .

end

// StateReg
always @(posedge ClIk) begin

end

StateNext endmodule

vidd_ch3_LaserTimerBeh.v

Finite-State Machines (FSMs)—Sequential Behavior
Parameters

o parameter declaration “timescale 1 ns/1 ns
o NOt a variable or net, bUt . module LaserTimer(B, X, Clk, Rst);
rather a constant - input B;
. tput X;
O A constant is a value that must ?ﬁpﬂﬁ chk. Ret;
be initialized, and that cannot _ parameter S OFF = 0, S.0n1 = 1
be changed within the module’s son2 = 2, 5_0n3 = 3-
deflnltlon . reg [1:0] State, StateNext;
o Four parameters defined .
// CombLogic

oS Off, S On1, S On2, S On3 always @(State, B) begin
o Correspond to FSM's states o

o Should be initialized to unique
values // StateReg
always @(posedge Clk) begin

end-

end
endmodule

vldd_ch3_LaserTimerBeh.v

15

14
Finite-State Machines (FSMs)—Sequential Behavior
o Module declares two reg variables “timescale 1 ns/1 ns
o State, StateNext R .
o Each is 2-bit vector (need two bits to module LaserTimer(B, X, Clk, Rst);
represent four unique state values 0 to 3) _ 8-
O Variables are shared between CombLogic and ;"‘:“tt req X:
StateReg procedures output reg X;
. input Clk, Rst;
o CombLogic procedure
o Event control sensitive to State and input B parameter S_Off = 0, S_Onl = 1,
o Will output StateNextand X S_0n2 = 2, S 0n3 = 3;
o StateReg procedure
. Sengilil\)/e to Clkinput reg [1:0] Sgate, StateNext
o Will output State, which it stores // CombLoy
alway:
s¢g 2 “ond
logic P /Mtﬁeg
State 4 — / always @(posedge Clk) begin
State register - end
—’ endmodule
statenet—_|
vldd_ch3_LaserTimerBeh.v
16

Finite-State Machines (FSMs)—Sequential Behavior
Procedures with Case Statements

o Procedure may use case statement /7 ConbLogic
o Preferred over if-else-if when just one alwiﬁe@(ggtz. B) begin
expression determines which statement Sigﬁ: bggin
to execute X <= 03
. if (B == 0)
O case (expression) StateNext <= S_OFf;
o Execute statement whose case item else
expression value matches case ond StateNext <= 5_0ni;
eXpreSSIOO 3 S_Onl: begin
O case item expression : statement X <= 1;
o statementis commonly a begin-end StateNext <= S_On2;
block, as in example end
. . . S_0n2: begin
O First case item expression that matches X <= 1;
executes; remaining case items ignored Statelext <= 5_0n3;
.. . en
o If no item matches, nothing executes S_on3: begin
B " . " X <= 1;
o Last item may be "default : statement StateNext <= S_OFF:
o Statement executes if none of the end
previous items matched endcase

end

vidd_ch3_LaserTimerBeh.v

17

Finite-State Machines (FSMs)—Sequential Behavior
Procedures with Case Statements

o FSM’'s CombLogic procedure

. reg [1:0] State, StateNext;
o Case statement describes states

// CombLogic
o case (State) , always @(State, B) begin
o Executes cor_respondlng statement case (State)
(often a begin-end block) based on Suppose State is g S_Off: begin
State's current value S_Onl X <= 0;
O A state's statements consist of if (8 ==0)
A StateNext <= S_Off;
o Actions of the state else
o Setting of next state (transitions) StateNext <= S_Onil;
. H end
o Ex: State is S_Onl »S Onl: begin

o Executes statements for state Onl,
jumps to endcase

Inputs: X; Outputs: B

X <= 1;
StateNext <= S_0n2;
end
S_On2: begin

X <= 1;

StateNext <= S_0n3;
end
S_On3: begin

X <= 13

StateNext <= S_Off;
end
endcase
end

vidd_ch3_LaserTimerBeh.v

Finite-State Machines (FSMs)—Sequential Behavior

o FSM StateReg Procedure

L.) i ---parameter S_Off = 0, S On1 =1,
o Similar to 4-bit register S_0n2 = 2, S_0n3 = 3;
o Register for State is 2-bit vector reg—__ reg [1:0] State, StateNext;

variable

o Procedure has synchronous reset -
o Resets State to FSM's initial state, 7/ StateReg
S_Off always @(posedge ClIk) begin

if Rst == 1)
State <= S_Off;
else
State <= StateNext;
end

vldd_ch3_LaserTimerBeh.v

19

18
Finite-State Machines (FSMs)—Sequential Behavior
Modules with Multiple Procedures and Shared Variables
Inputs: B; Outputs: X “timescale 1 ns/1 ns é;(-)nl: begin
module LaserTimer(B, X, Clk, Rst); X <= 1;
StateNext <= S_On2;
input B; end . .
output reg X; 570”2-_b39'"
input Clk, Rst; X <=1;
StateNext <= S_On3;
parameter S_Off = 0, S_Onl = 1, end . "
S_on2 = 2, S_0n3 = 3; S_0n3: begin
X <= 1;
reg [1:0] State, StateNext; endStateNext <= S_Off
// CombLogic endcase
always @(State, B) begin end
case (State)
S_OFf: begin // StateReg
T X <= 0; always @(posedge Clk) begin
i @ 2= 0) if (Rst == 1)
StateNext <= S_OFf; State <= S_Off;
else else
StateNext <= S Onil: State <= StateNext;
end — 77 end
endmodule
vldd_ch3_LaserTimerBeh.v

20

Finite-State Machines (FSMs)—Sequential Behavior

Self-Checking Testbenches

o FSM testbench
o First part of file (variable/net declarations,
module instantiations) similar to before
o Vector Procedure
o Resets FSM
o Sets FSM's input values (“test vectors™)
o Waits for specific clock cycles

o We observe the resulting waveforms to
determine if FSM behaves correctly

os [LI LI LI 1T
Rst_s_—l
Bl

10 20 30 40 50 60 70 80 90 100 110

time (ns)

// Clock Procedure
always begin
Clk_s <= 0;
#10;
Clk_s <= 1;
#10;
end // Note: Procedure repeats

// Vector Procedure

initial begin
Rst_s <= 1;
B_s <= 0;
@(posedge Clk_s);
#5 Rst_s <= 0;
@(posedge Clk_s);
#5 B_s <= 1;
@(posedge Clk_s);
#5 B_s <= 0;
@(posedge Clk_s);
@(posedge Clk_s);
@(posedge Clk_s);

end

endmodule

vidd_ch3_LaserTimerTB.v

21

Finite-State Machines (FSMs)—Sequential Behavior
Self-Checking Testbenches

o Reading waveforms is error-prone ,, vector procedure
initial begin
Rst_s <= 1;

o Create self-checking testbench
o0 Use /fstatements to check for
expected values
o If a check fails, print error message

o Ex: if X_s fell to 0 one cycle too
early, simulation might output:
O 95: Third X=1 failed

oks_ [T LI LI LT
Rst_s _“[
Bl
xs 1)

10 20 30 40 50 60 70 80 90 100110 °"
time (ns)

: Reset failed”, $time);

@(posedge Clk_s);
#5 B_s <= 1;
@(posedge Clk_s);
#5 B_s <= 0;
if (Xs 1= 1
$display(

: First X=1 failed”, $time);

$display(- Second X=1 failed", $time);
@(posedge Clk_s);
#5 if (X_s 1= 1)
$display("%t:
@(posedge Clk_s);
#5 if (X_s 1= 0)

$display("%t: Final X=0 failed", $time);

Third X=1 failed”, $time);

vldd_ch3_LaserTimerTBDisplay.v

Finite-State Machines (FSMs)—Sequential Behavior

$display System Procedure

o $display — built-in Verilog system
procedure for printing information to
display during simulation

o A system procedure interacts with the
simulator and/or host computer system
o To write to a display, read a file, get the
current simulation time, etc.
o Starts with $ to distinguish from regular
procedures

o String argument is printed literally...
o $display(“Hello") will print “Hello"
o Automatically adds newline character
o ...except when special sequences appear
o %t Display a time expression
o Time expression must be next argument

// Vector Procedure
initial begin
Rst_s <= 1;
B_s <= 0;
@(posedge Clk_s);
#5 if (X_s 1= 0)
$display("%t: Reset failed”, $time);
Rst_s <= 0;
@(posedge Clk_s);
#5 B_s <= 1;
@(posedge Clk_s);
#5 B_s <= 0;
if (s 1= 1)
$display("%t: First X=1 failed”, $time);
@(posedge Clk_s);
#5 if (X_s 1=

D
$display("%t: Second X=1 failed”, $time);

@(posedge Clk_s);
#5 if (X_s 1=

)
o $time — Built-in system procedure that $display("%t: Third X=1 failed", $time);
returns the current simulation ti @(posedge Clk_s);

o 95: Third X=1 failed

#5 if (X_s 1= 0)
$display("%t: Final X=0 failed", $time);
end
vldd_ch3_LaserTimerTBDisplay.v

23

22
Common Pitfall: Not Assigning Every Output in Every State
o FSM outputs should be .
combinational function of L e 8 begin
current state (for Moore FSM) ST X <= Eé ,
. . . . ;. case tate
o Not assigning output in given ; S_Off: begin
state means previous value is / %
remembered { Could delete this StateNext <= S_Off;
! without changing else
o Output has memory i behavior (but StateNext <= S_Onl;
o Behavior is not an FSM | probably clearer to end
i ; keep it) S_Onl: begin
o Solution 1 ; X <=1 < om
) ' tateNext <= n2;
O Be sure to assign every output end -
in every state : 5,0;2: bigin
. ; <=1;
o Solution 2 StateNext <= S_On3;
. end
o Assign default values before S 0n3: begin
case statement X <= 1;
o Later assignment in state ang ENeXE <= 80T
overwrites default endcase
end
24

Common Pitfall: Not Assigning Every Output in Every State

o Solution 2 case State
O Assign default values before $2 begin
case statement Bl
< o
O Later assignment in state end
overwrites default e peain .
. . - B <= 0;
o Helps clarify which actions are e 1
important in which state end
. endcase
o Corresponds directly to the
common simplifying FSM rey
diagram notation of implicitly C <= 0"

setting unassigned outputs to O

endcase

The Simulation Cycle

o Instructive to consider how an HDL
simulator works
o HDL simulation is complex; we'll introduce
simplified form
o Consider example SimEx1
o Three reg variables — Q, Clk, S
o Three procedures — P1, P2, P3
o Simulator's job: Determine values for nets
and variables over time
o0 Repeatedly executes and suspends
procedures

o Note: Actually considers more objects,
known collectively as processes, but we'll
keep matters simple here to get just the
basic idea of simulation

O Maintains a simulation time 7ime

“timescale 1 ns/1 ns
module SimEx1(Q);

output reg Q;
reg Clk, S;

// P1

always begin
Clk <= 0;
#10;
Clk <= 1;
#10;

end

// P2

always @(S) begin
Q <= -S;

end

// P3

initial begin
@ (posedge CIk);
S <= 1;
@ (posedge CIK);
S <= 0;

end

endmodule

vldd_ch3_SimEx1.v

26

25
The Simulation Cycle
“timescale 1 ns/1 ns
o Start of simulation module SImEX1(Q);
o Simulation time 7imeis O output reg Q;
O Bit variables/nets initialized to the unknown value x reg Clk, s;
o Execute each procedure 7/ P1
o In any order, until stops at a delay or event control We'll use arrow always begin
toshowwherea ---Clk <= 0
" Clk <=0, thenstop. ~ a------m 77777 Prosedoresops -giﬁ —
g Activate when Time is 0+10=10 ns. P
32 No actions, then stop. end
8 Activate when S changes. ~ ¥~-----
a No actions, then stop. e /P2 .
Activate when CIk changes to 1% “alwg"i:@f? begin
P) end
Time (ns): Start. 0 77 P3
; itial begin
P X @ (posedge CIk);
: S <= 1;
10 @ (posedge CIKk);
1 S <= 0;
X end
endmodule
vidd_ch3_SimEx1.v
27

The Simulation Cycle

o Simulation cycle
O Set time to next time at which a procedure activates
(note: could be same as current time)
o In this case, time = 10 ns (P1 activates)
o Execute active procedures (in any order) until stops

Activate when Time is 10 ns

Activate when S changes.

Procedures

Activate when Clk changes to 1.

Time (ns): Start 0 | 10

£ xx x
_‘EXOl
gxxx

“timescale 1 ns/1 ns
module SIMEx1(Q);

output reg Q;
reg Clk, S;

// P1
always begin
Clk <= 0;
=) #10;
Clk <=
=) #10;

end

i

// P2
mmp always @(S) begin

Q <= ~§;

end

// P3

initial begin

mm) @ (posedge CIk);

S <= 1;
@ (posedge Clk);

S<=0
end

endmodule

vldd_ch3_SimEx1.v

28

The Simulation Cycle

“timescale 1 ns/1 ns

module SimEx1(Q);

The Simulation Cycle

“timescale 1 ns/1 ns

module SimEx1(Q);

o__Simulation cycle
o Set time to next time at which a procedure activates

output reg Q;

o _Simulation cycle
o Set time to next time at which a procedure

output reg Q;

reg Clk, S;
o Still 10 ns; Clk just changed to 1 (P3 activates)
; ; ; /7 P1
o Execute active procedures (in any order) until stops always begin
Clk <= 0
. . . #10;
9 Activate when Time is 20 ns. Ok <= 1
£ - #10;
o .
g Activate when S changes. end
o
& ; 77 P2
Activate when C_Ik changes to 1“‘) = ahuays 6(S) begin
S <=1, stop, activate when Clk changes to 1 again Q <= ~s:
end
. . : : I
Time (ns): Start 0 : 10 ; 10 e 7/ 3
[- initial begin
§@ xix;xix ‘ﬂ@(posedgeclk)
o T S <
-g O 1)1 -) @ (posedge CIk);
> X fx 1 end o
endmodule

vidd_ch3_SimExl.v

29

activates reg Clk, s
o Still 10 ns; S just changed (P2 activates) 7/ P1
o Execute active procedures until stops alwgﬁ beg[i)"
<=
. L #10;
@ Activate when Time is 20 ns. -Clk -1
e #10;
§ Activate when S changes. . end
8 Q <=0 (~S), stop, activate whenS-changes.
3 /7 P2
e Activate when change on Clk to 1. Tl ‘.always @(S) begin
- Q <= ~S;
end
" . : ! ! g
Time (ns): Start 0 :10:10: 10 7/ P3
; | | ; initial begin
8 @ XX iX:ix:0 @ (posedge CIk);
3 [-
8 fgigigia _.5 zgoiedge clo;
s X L L
> VIR 0;
iUt o
endmodule

vidd_ch3_SimExl.v

The Simulation Cycle

“timescale 1 ns/1 ns

. . dule SimEx1l H
o Simulation cycle modute SINExL(Q)

o Set time to next time at which a procedure output reg Q;
activates reg Clk, S
o In this case, set Time = 20 ns (P1 activates) /7 p1
o Execute active procedures until stops alwgﬁ beg(l)n
et <= 0;
" Activate when Time is 20 ns. T -y o
£ Clk <=0, stop, activate when T= 20+10 30ns =) 10
k=3
3 Activate when S changes. end
o
5 77 P2
e Activate when change on Clk to 1.) always @(s) begin
Q <= -8
end
oyt : : : s
cInit; 0 :110:10:10: 20 7/ P3
: : : : : initial begin
@X}X}X}X}O}O @(posedgeclk)
x01110 -@(posedgeclk)
[A R S <= 0;
Xixixililil end
endmodule
vidd_ch3_SimEx1.v

31

30
The Simulation Cycle
“timescale 1 ns/1 ns
. dule SimEx1l H
o Simulation ends when user-specified time is modute SIMEXL(Q)
reached output reg Q;
K reg Clk, S;
o Variable/net values translate to waveforms e
@ g always begin
- X L——’ Clk <= 0;
< #10;
e Clk <= 1;
% #10;
> Xl_l_ end
—tFFt 17 P2
0 10 20 30 40 50 Time always @(S) begin
(ns) endQ <
Time (ns): Init{ 0 {10{10{10{20} 30130 3014050 1
@ [T R O A R initial begin
% 3x3x3x30303030313131 @ (posedge CIk);
) | | | | | | | | | | S <= 1;
3 0:1:1:1:0¢:1:1+1:0¢:1 @ (posedge CIk);
>]]] : : : : : : S <= 0;
Xxixi1:1:14:1:0:0:0:0 end
endmodule
vldd_ch3_SimEx1l.v
32

Variable Updates

" " - - * Simulation cycle (revised)
o Assignment using "<=" ("non blocking assignment”) _

. X . Set time to next time at
doesn't change variable's value immediately

) which a procedure resumes|
o Instead, schedules a change of value by placing an — Execute active procedures
eventon an event queue

. . Update variables with
o Scheduled changes occur at end of simulation cycle schedule values
o Important implications

o Procedure execution order in a simulation cycle doesn't Assume B is 0.
matter Procl:

o Assume procedures 1 and 2 are both active

B <= ~B;
o Procl schedules B to be 1, but does not change the present Proc2:
value of B. B is still 0. A <= B:
o Proc2 schedules A to be 0 (the present value of B). . ;
o Atend of simulation cycle, B is updated to 1 and A to 0 A will be 0, not 1.
o Order of assignments to different variables in a
procedure doesn't matter Proc3a: +— Same — Proc3b:
o Assume C was 0. Scheduled values will be C=1 and D=0, | ¢ <= ~C; g : c
for either Proc3a or Proc3b. B

o Later assignment in procedure effectively overwrites
earlier assignment Proc4:

o E will be updated with 0, but then by 1; so E is 1 at the E <= 0;
end of the simulation cycle.

P e E<=1

Recall FSM output assignment example,

in which default assignments were added
before the case statement.

33

