
1

ECE 274 Digital Logic – Fall 2008

Sequential Logic Design using Verilog
Verilog for Digital Design Ch. 3

2

Register Behavior

Sequential circuits have storage
Register: most common storage component

N-bit register stores N bits
Structure may consist of connected flip-flops

I3 I2 I1 I0

Q3 Q2 Q1 Q0

reg(4)
Rst

I2I3

Q2Q3 Q1 Q0

I1 I0

Clk

4-bit register

D

Q

R

D

Q

R

D

Q

R

D

Q

R

Rst

3

Register Behavior
Vectors

Typically just describe register 
behaviorally

Declare output Q as reg variable 
to achieve storage

Uses vector types
Collection of bits

More convenient than declaring 
separate bits like I3, I2, I1, I0

Vector's bits are numbered
Options: [0:3], [1:4], etc.
[3:0] 

Most-significant bit is on left

Assign with binary constant (more 
on next slide)

`timescale 1 ns/1 ns

module Reg4(I, Q, Clk, Rst);

input [3:0] I;
output [3:0] Q;
reg [3:0] Q;
input Clk, Rst;

always @(posedge Clk) begin
if (Rst == 1 ) 

Q <= 4'b0000;
else

Q <= I;
end

endmodule

vldd_ch3_Reg4.v

I3 I2 I1 I0

Q3 Q2 Q1 Q0

reg(4)
Rst

I3 I2 I1 I0

module Reg4(I3,I2,I1,I0,Q3,...);
input I3, I2, I1, I0;

module Reg4(I, Q, ...);
input [3:0] I;

I:
I[3]I[2]I[1]I[0]

4

Register Behavior
Constants

Binary constant
4'b0000

4: size, in number of bits
'b: binary base
0000: binary value

Other constant bases possible
d: decimal base, o: octal base, h: 
hexadecimal base
12'hFA2

'h: hexadecimal base
12: 3 hex digits require 12 bits
FA2: hex value

Size is always in bits, and optional 
'hFA2 is OK

For decimal constant, size and 'd optional
8'd255 or just 255 
In previous uses like “A <= 1;” 1 and 0 
are actually decimal numbers. ‘b1 and ‘b0 
would explicitly represent bits

Underscores may be inserted into value 
for readability

12'b1111_1010_0010
8_000_000

`timescale 1 ns/1 ns

module Reg4(I, Q, Clk, Rst);

input [3:0] I;
output [3:0] Q;
reg [3:0] Q;
input Clk, Rst;

always @(posedge Clk) begin
if (Rst == 1 ) 

Q <= 4'b0000;
else

Q <= I;
end

endmodule

vldd_ch3_Reg4.v

I3 I2 I1 I0

Q3 Q2 Q1 Q0

reg(4)
Rst



2

5

`timescale 1 ns/1 ns

module Reg4(I, Q, Clk, Rst);

input [3:0] I;
output [3:0] Q;
reg [3:0] Q;
input Clk, Rst;

always @(posedge Clk) begin
if (Rst == 1 ) 

Q <= 4'b0000;
else

Q <= I;
end

endmodule

Register Behavior

Procedure's event control 
involves Clk input

Not the I input. Thus, 
synchronous
"posedge Clk"

Event is not just any 
change on Clk, but 
specifically change from 0 
to 1 (positive edge)
negedge also possible

Process has synchronous 
reset

Resets output Q only on 
rising edge of Clk

Process writes output Q
Q declared as reg variable, 
thus stores value too vldd_ch3_Reg4.v

I3 I2 I1 I0

Q3 Q2 Q1 Q0

reg(4)
Rst

6

Register Behavior
Testbench

reg/wire declarations and 
module instantiation 
similar to previous 
testbenches
Module uses two 
procedures

One generates 20 ns clock
0 for 10 ns, 1 for 10 ns
Note: always procedure 
repeats

Other provides values for 
inputs Rst and I (i.e., 
vectors)

initial procedure executes 
just once, does not repeat
(more on next slide) vldd_ch3_Reg4TB.v

`timescale 1 ns/1 ns

module Testbench();

reg [3:0] I_s;
reg Clk_s, Rst_s;
wire [3:0] Q_s;

Reg4 CompToTest(I_s, Q_s, Clk_s, Rst_s);

// Clock Procedure
always begin

Clk_s <= 0;
#10; 
Clk_s <= 1;
#10;

end   // Note: Procedure repeats

// Vector Procedure
initial begin

Rst_s <= 1;
I_s <= 4'b0000;
@(posedge Clk_s);
#5 Rst_s <= 0;
I_s <= 4'b0000;
@(posedge Clk_s);
#5 Rst_s <= 0;
I_s <= 4'b1010;
@(posedge Clk_s);
#5 Rst_s <= 0;
I_s <= 4'b1111;

end
endmodule

7

Register Behavior
Testbench

Variables/nets can be shared 
between procedures

Only one procedure should write 
to variable

Variable can be read by many 
procedures
Clock procedure writes to Clk_s
Vector procedures reads Clk_s

Event control "@(posedge Clk_s)"
May be prepended to statement 
to synchronize execution with 
event occurrence 

Statement may be just ";" as in 
example
In previous examples, the 
“statement” was a sequential 
block (begin-end)

Test vectors thus don't include 
the clock's period hard coded

Care taken to change input values 
away from clock edges 

vldd_ch3_Reg4TB.v

`timescale 1 ns/1 ns

module Testbench();

reg [3:0] I_s;
reg Clk_s, Rst_s;
wire [3:0] Q_s;

Reg4 CompToTest(I_s, Q_s, Clk_s, Rst_s);

// Clock Procedure
always begin

Clk_s <= 0;
#10; 
Clk_s <= 1;
#10;

end   // Note: Procedure repeats

// Vector Procedure
initial begin

Rst_s <= 1;
I_s <= 4'b0000;
@(posedge Clk_s);
#5 Rst_s <= 0;
I_s <= 4'b0000;
@(posedge Clk_s);
#5 Rst_s <= 0;
I_s <= 4'b1010;
@(posedge Clk_s);
#5 Rst_s <= 0;
I_s <= 4'b1111;

end
endmodule

8

Register Behavior
Testbench

Simulation results
Note that Q_s updated only 
on rising clock edges
Note Q_s thus unknown until 
first clock edge

Q_s is reset to “0000” on 
first clock edge

vldd_ch3_Reg4TB.v

...
always @(posedge Clk) begin

if (Rst == 1 ) 
Q <= 4'b0000;

else
Q <= I;

end
...   vldd_ch3_Reg4.v

...

// Vector Procedure
initial begin

Rst_s <= 1;
I_s <= 4'b0000;
@(posedge Clk_s);
#5 Rst_s <= 0;
I_s <= 4'b0000;
@(posedge Clk_s);
#5 Rst_s <= 0;
I_s <= 4'b1010;
@(posedge Clk_s);
#5 Rst_s <= 0;
I_s <= 4'b1111;

end

I_s

Q_s

time (ns)
10 20 30 40

Clk_s

50 70

0000 1010 1111

xxxx 0000 1010 1111

Rst_s

60 80

Remember that Q_s is connected to 
Q, and I_s to I, in the testbench

Initial value of a bit is the 
unknown value x



3

9

Common Pitfalls

Using "always" instead of "initial" 
procedure

Causes repeated procedure execution

Not including any delay control or event 
control in an always procedure

May cause infinite loop in the simulator
Simulator executes those statements over 
and over, never executing statements of 
another procedure
Simulation time can never advance

Symptom – Simulator appears to just 
hang, generating no waveforms

// Vector Procedure
always begin

Rst_s <= 1;
I_s <= 4'b0000;
@(posedge Clk_s);
...
@(posedge Clk_s);
#5 Rst_s <= 0;
I_s <= 4'b1111;

end

// Vector Procedure
always begin

Rst_s <= 1;
I_s <= 4'b0000;

end

time (ns)

I_s

Q_s

10 20 30 40

Clk_s

50 70

Rst_s

60 80

10

Common Pitfalls

Not initializing all module inputs
May cause undefined outputs
Or simulator may initialize to default 
value. Switching simulators may cause 
design to fail. 
Tip: Immediately initialize all module 
inputs when first writing procedure  

// Vector Procedure
always begin

Rst_s <= 1;
I_s <= 4'b0000;
@(posedge Clk_s);
...
@(posedge Clk_s);
#5 Rst_s <= 0;
I_s <= 4'b1111;

end

11

Common Pitfalls

Forgetting to explicitly declare as a wire 
an identifier used in a port connection

e.g., Q_s
Verilog implicitly declares identifier as a 
net of the default net type, typically a 
one-bit wire

Intended as shortcut to save typing for 
large circuits
May not give warning message during 
compilation
Works fine if a one-bit wire was desired
But may be mismatch – in this example, 
the wire should have been four bits, not 
one bit
Unexpected simulation results

Always explicitly declare wires
Best to avoid use of Verilog's implicit 
declaration shortcut

`timescale 1 ns/1 ns

module Testbench();

reg [3:0] I_s;
reg Clk_s, Rst_s;
wire [3:0] Q_s;

Reg4 CompToTest(I_s, Q_s, Clk_s, Rst_s);

...

12

Finite-State Machines (FSMs)—Sequential Behavior

Finite-state machine (FSM) is a 
common model of sequential 
behavior

Example: If B=1, hold X=1 for 3 
clock cycles

Note: Transitions implicitly ANDed
with rising clock edge

Implementation model has two 
parts:

State register
Combinational logic

HDL model will reflect those two 
parts

Inputs: B; Outputs: X

On2On1 On3

Off

X=1X=1X=1

X=0

B'

B

Combinational
logic

State register

State

XB

Clk

FSM

outputs

FS
M

in
pu

ts

FS
M

ou
tp

ut
s

StateNext



4

13

Finite-State Machines (FSMs)—Sequential Behavior
Modules with Multiple Procedures and Shared Variables

`timescale 1 ns/1 ns

module LaserTimer(B, X, Clk, Rst);

input B;
output reg X;
input Clk, Rst;

parameter S_Off = 0, S_On1 = 1,
S_On2 = 2, S_On3 = 3;

reg [1:0] State, StateNext;

// CombLogic
always @(State, B) begin

case (State) 
S_Off: begin

X <= 0;
if (B == 0) 

StateNext <= S_Off;
else

StateNext <= S_On1;
end
...

...
S_On1: begin

X <= 1;
StateNext <= S_On2;

end
S_On2: begin

X <= 1;
StateNext <= S_On3;

end
S_On3: begin

X <= 1;
StateNext <= S_Off;

end
endcase

end

// StateReg
always @(posedge Clk) begin

if (Rst == 1 ) 
State <= S_Off;

else
State <= StateNext;

end
endmodule

vldd_ch3_LaserTimerBeh.v

Inputs: B; Outputs: X

On2On1 On3

Off

X=1X=1X=1

X=0

B'

B

Combinational
logic

State register

State

XB

Clk

FS
M

in
pu

ts

FS
M

ou
tp

ut
s

StateNext

14

Finite-State Machines (FSMs)—Sequential Behavior

Modules has two procedures
One procedure for combinational 
logic
One procedure for state register
But it's still a behavioral 
description 

`timescale 1 ns/1 ns

module LaserTimer(B, X, Clk, Rst);

input B;
output reg X;
input Clk, Rst;

parameter S_Off = 0, S_On1 = 1,
S_On2 = 2, S_On3 = 3;

reg [1:0] State, StateNext;

// CombLogic
always @(State, B) begin

...
end

// StateReg
always @(posedge Clk) begin

...
end

endmodule

Combinational
logic

State register

State

XB

Clk

FS
M

in
pu

ts

FS
M

ou
tp

ut
s

StateNext

vldd_ch3_LaserTimerBeh.v

15

`timescale 1 ns/1 ns

module LaserTimer(B, X, Clk, Rst);

input B;
output reg X;
input Clk, Rst;

parameter S_Off = 0, S_On1 = 1,
S_On2 = 2, S_On3 = 3;

reg [1:0] State, StateNext;

// CombLogic
always @(State, B) begin

...
end

// StateReg
always @(posedge Clk) begin

...
end

endmodule

Finite-State Machines (FSMs)—Sequential Behavior
Parameters

parameter declaration
Not a variable or net, but 
rather a constant
A constant is a value that must 
be initialized, and that cannot 
be changed within the module’s 
definition
Four parameters defined

S_Off, S_On1, S_On2, S_On3
Correspond to FSM’s states

Should be initialized to unique 
values

vldd_ch3_LaserTimerBeh.v

16

Finite-State Machines (FSMs)—Sequential Behavior

Module declares two reg variables
State, StateNext
Each is 2-bit vector (need two bits to 
represent four unique state values 0 to 3)
Variables are shared between CombLogic and 
StateReg procedures

CombLogic procedure
Event control sensitive  to State and input B
Will output StateNext and X

StateReg procedure
Sensitive to Clk input
Will output State, which it stores

Combinational
logic

State register

State

XB

Clk

FS
M

in
pu

ts

FS
M

ou
tp

ut
s

StateNext

`timescale 1 ns/1 ns

module LaserTimer(B, X, Clk, Rst);

input B;
output reg X;
input Clk, Rst;

parameter S_Off = 0, S_On1 = 1,
S_On2 = 2, S_On3 = 3;

reg [1:0] State, StateNext;

// CombLogic
always @(State, B) begin

...
end

// StateReg
always @(posedge Clk) begin

...
end

endmodule

vldd_ch3_LaserTimerBeh.v



5

17

Finite-State Machines (FSMs)—Sequential Behavior
Procedures with Case Statements

Procedure may use case statement
Preferred over if-else-if when just one 
expression determines which statement 
to execute
case (expression)

Execute statement whose case item 
expression value matches case 
expression

case item expression : statement
statement is commonly a begin-end 
block, as in example

First case item expression that matches 
executes; remaining case items ignored
If no item matches, nothing executes
Last item may be "default : statement" 

Statement executes if none of the 
previous items matched

// CombLogic
always @(State, B) begin

case (State) 
S_Off: begin

X <= 0;
if (B == 0) 

StateNext <= S_Off;
else

StateNext <= S_On1;
end
S_On1: begin

X <= 1;
StateNext <= S_On2;

end
S_On2: begin

X <= 1;
StateNext <= S_On3;

end
S_On3: begin

X <= 1;
StateNext <= S_Off;

end
endcase

end

vldd_ch3_LaserTimerBeh.v

18

Finite-State Machines (FSMs)—Sequential Behavior
Procedures with Case Statements

FSM’s CombLogic procedure
Case statement describes states
case (State) 

Executes corresponding statement 
(often a begin-end block) based on 
State's current value

A state's statements consist of
Actions of the state
Setting of next state (transitions)

Ex: State is S_On1 
Executes statements for state On1, 
jumps to endcase

reg [1:0] State, StateNext;

// CombLogic
always @(State, B) begin

case (State) 
S_Off: begin

X <= 0;
if (B == 0) 

StateNext <= S_Off;
else

StateNext <= S_On1;
end
S_On1: begin

X <= 1;
StateNext <= S_On2;

end
S_On2: begin

X <= 1;
StateNext <= S_On3;

end
S_On3: begin

X <= 1;
StateNext <= S_Off;

end
endcase

end

Suppose State is 
S_On1

Inputs: X; Outputs: B

On2On1 On3

Off

X=1X=1X=1

X=0

B'

B

vldd_ch3_LaserTimerBeh.v

19

Finite-State Machines (FSMs)—Sequential Behavior

FSM StateReg Procedure
Similar to 4-bit register

Register for State is 2-bit vector reg
variable

Procedure has synchronous reset
Resets State to FSM’s initial state, 
S_Off

...
parameter S_Off = 0, S_On1 = 1,

S_On2 = 2, S_On3 = 3;

reg [1:0] State, StateNext;

...

// StateReg
always @(posedge Clk) begin

if (Rst == 1 ) 
State <= S_Off;

else
State <= StateNext;

end
...

vldd_ch3_LaserTimerBeh.v

20

Finite-State Machines (FSMs)—Sequential Behavior
Modules with Multiple Procedures and Shared Variables

`timescale 1 ns/1 ns

module LaserTimer(B, X, Clk, Rst);

input B;
output reg X;
input Clk, Rst;

parameter S_Off = 0, S_On1 = 1,
S_On2 = 2, S_On3 = 3;

reg [1:0] State, StateNext;

// CombLogic
always @(State, B) begin

case (State) 
S_Off: begin

X <= 0;
if (B == 0) 

StateNext <= S_Off;
else

StateNext <= S_On1;
end
...

...
S_On1: begin

X <= 1;
StateNext <= S_On2;

end
S_On2: begin

X <= 1;
StateNext <= S_On3;

end
S_On3: begin

X <= 1;
StateNext <= S_Off;

end
endcase

end

// StateReg
always @(posedge Clk) begin

if (Rst == 1 ) 
State <= S_Off;

else
State <= StateNext;

end
endmodule

vldd_ch3_LaserTimerBeh.v

Inputs: B; Outputs: X

On2On1 On3

Off

X=1X=1X=1

X=0

B'

B

Combinational
logic

State register

State

XB

Clk

FS
M

in
pu

ts

FS
M

ou
tp

ut
s

StateNext



6

21

Finite-State Machines (FSMs)—Sequential Behavior
Self-Checking Testbenches

FSM testbench
First part of file (variable/net declarations, 
module instantiations) similar to before
Vector Procedure

Resets FSM
Sets FSM's input values (“test vectors”)
Waits for specific clock cycles

We observe the resulting waveforms to 
determine if FSM behaves correctly

...
// Clock Procedure
always begin

Clk_s <= 0;
#10;
Clk_s <= 1;
#10;

end   // Note: Procedure repeats

// Vector Procedure
initial begin

Rst_s <= 1;
B_s <= 0;
@(posedge Clk_s);
#5 Rst_s <= 0;
@(posedge Clk_s);
#5 B_s <= 1;
@(posedge Clk_s);
#5 B_s <= 0;
@(posedge Clk_s);
@(posedge Clk_s);
@(posedge Clk_s);

end
endmodule

vldd_ch3_LaserTimerTB.v

B_s

X_s

time (ns)
10 20 30 40

Clk_s

50 70

Rst_s

60 80 90 110100

22

Finite-State Machines (FSMs)—Sequential Behavior
Self-Checking Testbenches

vldd_ch3_LaserTimerTBDisplay.v

// Vector Procedure
initial begin

Rst_s <= 1;
B_s <= 0;
@(posedge Clk_s);
#5 if (X_s != 0) 

$display("%t: Reset failed", $time);
Rst_s <= 0;
@(posedge Clk_s);
#5 B_s <= 1;
@(posedge Clk_s);
#5 B_s <= 0;
if (X_s != 1) 

$display("%t: First X=1 failed", $time);
@(posedge Clk_s);
#5 if (X_s != 1) 

$display("%t: Second X=1 failed", $time);
@(posedge Clk_s);
#5 if (X_s != 1) 

$display("%t: Third X=1 failed", $time);
@(posedge Clk_s);
#5 if (X_s != 0) 

$display("%t: Final X=0 failed", $time);
end

B_s

X_s

time (ns)
10 20 30 40

Clk_s

50 70

Rst_s

60 80 90 110100

Reading waveforms is error-prone
Create self-checking testbench

Use if statements to check for 
expected values

If a check fails, print error message
Ex: if X_s fell to 0 one cycle too 
early, simulation might output:

95: Third X=1 failed

23

Finite-State Machines (FSMs)—Sequential Behavior
$display System Procedure

vldd_ch3_LaserTimerTBDisplay.v

// Vector Procedure
initial begin

Rst_s <= 1;
B_s <= 0;
@(posedge Clk_s);
#5 if (X_s != 0) 

$display("%t: Reset failed", $time);
Rst_s <= 0;
@(posedge Clk_s);
#5 B_s <= 1;
@(posedge Clk_s);
#5 B_s <= 0;
if (X_s != 1) 

$display("%t: First X=1 failed", $time);
@(posedge Clk_s);
#5 if (X_s != 1) 

$display("%t: Second X=1 failed", $time);
@(posedge Clk_s);
#5 if (X_s != 1) 

$display("%t: Third X=1 failed", $time);
@(posedge Clk_s);
#5 if (X_s != 0) 

$display("%t: Final X=0 failed", $time);
end

$display – built-in Verilog system 
procedure for printing information to 
display during simulation

A system procedure interacts with the 
simulator and/or host computer system

To write to a display, read a file, get the 
current simulation time, etc. 
Starts with $ to distinguish from regular 
procedures

String argument is printed literally...
$display("Hello") will print "Hello"
Automatically adds newline character

...except when special sequences appear
%t: Display a time expression

Time expression must be next argument
$time – Built-in system procedure that 
returns the current simulation time

95: Third X=1 failed

24

Common Pitfall: Not Assigning Every Output in Every State

FSM outputs should be 
combinational function of 
current state (for Moore FSM)
Not assigning output in given 
state means previous value is 
remembered

Output has memory
Behavior is not an FSM

Solution 1
Be sure to assign every output 
in every state

Solution 2
Assign default values before 
case statement
Later assignment in state 
overwrites default

// CombLogic
always @(State, B) begin

X <= 0;
case (State) 

S_Off: begin
X <= 0;
if (B == 0) 

StateNext <= S_Off;
else

StateNext <= S_On1;
end
S_On1: begin

X <= 1;
StateNext <= S_On2;

end
S_On2: begin

X <= 1;
StateNext <= S_On3;

end
S_On3: begin

X <= 1;
StateNext <= S_Off;

end
endcase

end

Could delete this 
without changing 

behavior (but 
probably clearer to 

keep it)



7

25

Common Pitfall: Not Assigning Every Output in Every State

Solution 2
Assign default values before 
case statement
Later assignment in state 
overwrites default
Helps clarify which actions are 
important in which state
Corresponds directly to the 
common simplifying FSM 
diagram notation of implicitly 
setting unassigned outputs to 0

TS
A=0
B=1
C=0

A=0
B=0
C=1

TS
B=1 C=1

case State
S: begin

A <= 0;
B <= 1;
C <= 0;

end
T: begin

A <= 0;
B <= 0;
C <= 1;

end
endcase

A <= 0;
B <= 0;
C <= 0;
case State

S: begin
B <= 1;

end
T: begin

C <= 1;
end

endcase

26

The Simulation Cycle

Instructive to consider how an HDL 
simulator works

HDL simulation is complex; we'll introduce 
simplified form

Consider example SimEx1
Three reg variables – Q, Clk, S
Three procedures – P1, P2, P3

Simulator's job:  Determine values for nets 
and variables over time

Repeatedly executes and suspends
procedures

Note: Actually considers more objects, 
known collectively as processes, but we'll 
keep matters simple here to get just the 
basic idea of simulation

Maintains a simulation time Time

`timescale 1 ns/1 ns

module SimEx1(Q);

output reg Q;
reg Clk, S;

// P1
always begin

Clk <= 0;
#10;
Clk <= 1;
#10;

end

// P2
always @(S) begin

Q <= ~S;
end

// P3
initial begin

@ (posedge Clk);
S <= 1;
@ (posedge Clk);
S <= 0;

end

endmodule

vldd_ch3_SimEx1.v

27

The Simulation Cycle

Start of simulation
Simulation time Time is 0
Bit variables/nets initialized to the unknown value x
Execute each procedure

In any order, until stops at a delay or event control

`timescale 1 ns/1 ns

module SimEx1(Q);

output reg Q;
reg Clk, S;

// P1
always begin

Clk <= 0;
#10;
Clk <= 1;
#10;

end

// P2
always @(S) begin

Q <= ~S;
end

// P3
initial begin

@ (posedge Clk);
S <= 1;
@ (posedge Clk);
S <= 0;

end

endmodule

vldd_ch3_SimEx1.v

Q

Clk

SV
ar

ia
bl

es x

x
x

Start

x

0
x

0Time (ns):

P1

P2

P3

Clk <= 0, then stop.  
Activate when Time is 0+10=10 ns.
No actions, then stop. 
Activate when S changes.
No actions, then stop. 
Activate when Clk changes to 1

Pr
oc

ed
ur

es

We'll use arrow 
to show where a 
procedure stops

28

The Simulation Cycle

Simulation cycle
Set time to next time at which a procedure activates 
(note: could be same as current time)

In this case, time = 10 ns (P1 activates)
Execute active procedures (in any order) until stops

vldd_ch3_SimEx1.v

Q

Clk

SV
ar

ia
bl

es x

x
x

Start

x

0
x

0Time (ns):

x

1
x

10

P1

P2

P3

Activate when Time is 10 ns.

Activate when S changes.

Activate when Clk changes to 1.Pr
oc

ed
ur

es Clk <= 1, stop, activate when Time=10+10=20 ns.

`timescale 1 ns/1 ns

module SimEx1(Q);

output reg Q;
reg Clk, S;

// P1
always begin

Clk <= 0;
#10;
Clk <= 1;
#10;

end

// P2
always @(S) begin

Q <= ~S;
end

// P3
initial begin

@ (posedge Clk);
S <= 1;
@ (posedge Clk);
S <= 0;

end

endmodule



8

29

The Simulation Cycle

Simulation cycle
Set time to next time at which a procedure activates

Still 10 ns; Clk just changed to 1 (P3 activates)

Execute active procedures (in any order) until stops

vldd_ch3_SimEx1.v

Q

Clk

SV
ar

ia
bl

es x

x
x

Start

x

0
x

0

x

1
x

10

x

1
1

10Time (ns):

P1

P2

P3

Activate when Time is 20 ns.

Activate when S changes.

Activate when Clk changes to 1Pr
oc

ed
ur

es

S <= 1, stop, activate when Clk changes to 1 again

`timescale 1 ns/1 ns

module SimEx1(Q);

output reg Q;
reg Clk, S;

// P1
always begin

Clk <= 0;
#10;
Clk <= 1;
#10;

end

// P2
always @(S) begin

Q <= ~S;
end

// P3
initial begin

@ (posedge Clk);
S <= 1;
@ (posedge Clk);
S <= 0;

end

endmodule

30

The Simulation Cycle

Simulation cycle
Set time to next time at which a procedure 
activates

Still 10 ns; S just changed (P2 activates)
Execute active procedures until stops

vldd_ch3_SimEx1.v

Q

Clk

SV
ar

ia
bl

es x

x
x

Start

x

0
x

0

x

1
x

10

x

1
1

10

0

1
1

10Time (ns):

P1

P2

P3

Activate when Time is 20 ns.

Activate when S changes.

Activate when change on Clk to 1.Pr
oc

ed
ur

es

Q <= 0 (~S), stop, activate when S changes.

`timescale 1 ns/1 ns

module SimEx1(Q);

output reg Q;
reg Clk, S;

// P1
always begin

Clk <= 0;
#10;
Clk <= 1;
#10;

end

// P2
always @(S) begin

Q <= ~S;
end

// P3
initial begin

@ (posedge Clk);
S <= 1;
@ (posedge Clk);
S <= 0;

end

endmodule

31

The Simulation Cycle

Simulation cycle
Set time to next time at which a procedure 
activates

In this case, set Time = 20 ns (P1 activates)
Execute active procedures until stops

vldd_ch3_SimEx1.v

Q

Clk

SV
ar

ia
bl

es x

x
x

Init

x

0
x

0

x

1
x

10

x

1
1

10

0

1
1

10Time (ns):

P1

P2

P3

Activate when Time is 20 ns.

Activate when S changes.

Activate when change on Clk to 1.Pr
oc

ed
ur

es Clk <= 0, stop, activate when T=20+10=30ns.

0

0
1

20

`timescale 1 ns/1 ns

module SimEx1(Q);

output reg Q;
reg Clk, S;

// P1
always begin

Clk <= 0;
#10;
Clk <= 1;
#10;

end

// P2
always @(S) begin

Q <= ~S;
end

// P3
initial begin

@ (posedge Clk);
S <= 1;
@ (posedge Clk);
S <= 0;

end

endmodule

32

The Simulation Cycle

Simulation ends when user-specified time is 
reached
Variable/net values translate to waveforms

vldd_ch3_SimEx1.v

Q

Clk

S

V
ar

ia
bl

es x

x
x

Init

x

0
x

0

x

1
x

10

x

1
1

10

0

1
1

10Time (ns):

0

0
1

20

0

1
1

30

0

1
0

30

1

1
0

30

1

0
0

40

1

1
0

50

Q

Clk

SV
ar

ia
bl

es

Time 
(ns)

10 20 30 40 500

x

x

`timescale 1 ns/1 ns

module SimEx1(Q);

output reg Q;
reg Clk, S;

// P1
always begin

Clk <= 0;
#10;
Clk <= 1;
#10;

end

// P2
always @(S) begin

Q <= ~S;
end

// P3
initial begin

@ (posedge Clk);
S <= 1;
@ (posedge Clk);
S <= 0;

end

endmodule



9

33

Variable Updates

Assignment using "<=" ("non blocking assignment") 
doesn't change variable's value immediately

Instead, schedules a change of value by placing an 
event on an event queue 
Scheduled changes occur at end of simulation cycle

Important implications
Procedure execution order in a simulation cycle doesn't 
matter

Assume procedures 1 and 2 are both active
Proc1 schedules B to be 1, but does not change the present 
value of B. B is still 0. 
Proc2 schedules A to be 0 (the present value of B). 
At end of simulation cycle, B is updated to 1 and A to 0

Order of assignments to different variables in a 
procedure doesn't matter

Assume C was 0. Scheduled values will be C=1 and D=0, 
for either Proc3a or Proc3b.

Later assignment in procedure effectively overwrites 
earlier assignment

E will be updated with 0, but then by 1; so E is 1 at the 
end of the simulation cycle.

• Simulation cycle (revised)
– Set time to next time at 

which a procedure resumes
– Execute active procedures
– Update variables with 

schedule values

Assume B is 0. 
Proc1:

B <= ~B;

Proc2:
A <= B;

A will be 0, not 1. 

Proc3a:
C <= ~C;
D <= C;

Proc3b:
D <= C;
C <= ~C;

Same

Proc4:
E <= 0;
...
E <= 1;

Recall FSM output assignment example, 
in which default assignments were added 

before the case statement. 


