
1

ECE 274 Digital Logic – Fall 2008

Datapath Component Design using Verilog
Verilog for Digital Design Ch. 3

2

Multifunction Register Behavior

Previously-considered register loaded
on every clock cycle
Now consider register with control
inputs, such as load or shift

Could describe structurally
Four flip-flops, four muxes, and some
combinational logic (to convert control
inputs to mux select inputs)

We'll describe behaviorally

I2I3

Q2Q3 Q1 Q0

I1 I0

Clk

4-bit register

D

Q
R

D

Q
R

D

Q
R

D

Q
R

Rst

Maintain present value
Shift left
Shift right
Shift right – Shr has priority over Shl
Parallel load
Parallel load – ld has priority
Parallel load – ld has priority
Parallel load – ld has priority

OperationShlShrLd
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Q2 Q1 Q0Q3

I2 I1 I0I3
Shr_in

Shr
Shl

Ld
Shl_in

Rst

Maintainvalue
Shift left

OperationLd Shr Shl

0
1

0
0

0
0

Parallel loadXX1
Shift rightX10

Compact register operation table,
clearly showing priorities

3

`timescale 1 ns/1 ns

module MfReg4(I, Q, Ld, Shr, Shl, Shr_in, Shl_in, Clk, Rst);

input [3:0] I;
output [3:0] Q;
input Ld, Shr, Shl, Shr_in, Shl_in;
input Clk, Rst;

reg [3:0] R;

always @(posedge Clk) begin
if (Rst == 1)

R <= 4'b0000;
else if (Ld == 1)

R <= I;
else if (Shr == 1) begin

R[3] <= Shr_in; R[2] <= R[3];
R[1] <= R[2]; R[0] <= R[1];

end
else if (Shl == 1) begin

R[0] <= Shl_in; R[1] <= R[0];
R[2] <= R[1]; R[3] <= R[2];

end
end

assign Q = R;
endmodule

Multifunction Register
Behavior

Use if-else-if construct
else-if parts ensure correct
priority of control inputs

Rst has first priority, then Ld,
then Shr, and finally Shl

Shift by assigning each bit
Recall that statement order
doesn't matter

Use reg variable R for storage
Best not to try to use port Q –
good practice dictates not
reading a module's output
ports from within a module

Use continuous assignment to
update Q when R changes

Identifier on left of "=" must
be a net, not a variable Maintainvalue

Shift left

OperationLd Shr Shl

0
1

0
0

0
0

Parallel loadXX1
Shift rightX10

vldd_ch4_MfReg4.v
4

Multifunction Register
Behavior

Testbench should test
numerous possible loads
and shifts

Testbench shown is brief
Resets register to 0000
Loads 1111
Shifts right, shifting in 0
Continues shifting right

Eventually register is 0000

...
// Clock Procedure
...

// Vector Procedure
initial begin

Rst_s <= 1;
I_s <= 4'b0000;
Ld_s <= 0; Shr_s <= 0; Shl_s <= 0;
Shr_in_s <= 0; Shl_in_s <= 0;
@(posedge Clk_s);
#5 Rst_s <= 0;
I_s <= 4'b1111; Ld_s <= 1;
@(posedge Clk_s);
#5 Ld_s <= 0; Shr_s <= 1;
// Good testbench needs more vectors

end
endmodule

vldd_ch4_MfReg4TB.v

I_s
Q_s

Ld_s
Shr_s
Shl_s

Shr_in_s
Shl_in_s

Clk_s
Rst_s

0 10 20 30 40 50 60 70 80 90 100 110 120 time (ns)

2

5

Multifunction Register
Behavior

Question: Does the
shown description, with
Q declared as a reg, and
"Q <= R;" as the last
statement, correctly
describe the register?

vldd_ch4_MfReg4Wrong.v

`timescale 1 ns/1 ns

module MfReg4(I, Q, Ld, Shr, Shl, Shr_in, Shl_in, Clk, Rst);

input [3:0] I;
output [3:0] Q;
reg [3:0] Q;
input Ld, Shr, Shl, Shr_in, Shl_in;
input Clk, Rst;

reg [3:0] R;

always @(posedge Clk) begin
if (Rst == 1)

R <= 4'b0000;
else if (Ld == 1)

R <= I;
else if (Shr == 1) begin

R[3] <= Shr_in; R[2] <= R[3];
R[1] <= R[2]; R[0] <= R[1];

end
else if (Shl == 1) begin

R[0] <= Shl_in; R[1] <= R[0];
R[2] <= R[1]; R[3] <= R[2];

end
Q <= R;

end
endmodule

• Answer: No. Q gets the
present value of R, not
the scheduled value.

6

Multifunction Register
Behavior

vldd_ch4_MfReg4Wrong.v

...
always @(posedge Clk) begin

if (Rst == 1)
R <= 4'b0000;

else if (Ld == 1)
R <= I;

else if (Shr == 1) begin
R[3] <= Shr_in; R[2] <= R[3];
R[1] <= R[2]; R[0] <= R[1];

end
else if (Shl == 1) begin

R[0] <= Shl_in; R[1] <= R[0];
R[2] <= R[1]; R[3] <= R[2];

end
Q <= R;

end
...

• Question: Does the
shown description, with
Q declared as a reg, and
"Q <= R;" as the last
statement, correctly
describe the register?

• Answer: No. Q gets the
present value of R, not
the scheduled value.
• Q thus lags behind R

by 1 cycle

Should have become 0000 on the first clock cycle

Q_s

Clk_s

0 10 20

7

Common Pitfall
Not Using Begin-End Block in If Statement

For more compact code, designers
sometimes don't use begin-end
block for if statement having just
one sub-statement

As in our register description

Problem occurs if one adds
another sub-statement later
without remembering to add
begin-end block
Solution – Always use begin-end
block in if statement

always @(posedge Clk) begin
if (Rst == 1)

R <= 4'b0000;

always @(posedge Clk) begin
if (Rst == 1)

R <= 4'b0000;
$display("Reset done.");

Later

always @(posedge Clk) begin
if (Rst == 1) begin

R <= 4'b0000;
end

always @(posedge Clk) begin
if (Rst == 1) begin

R <= 4'b0000;
$display("Reset done.");

end

Later

Displays even if Rst not 1

8

4-Bit Adder

4-bit adder adds two 4-bit binary
inputs A and B, sets 4-bit output
S
Could describe structurally

Carry-ripple: 4 full-adders

Behaviorally
Simply: S <= A + B
"always" procedure sensitive to A
and B

Adder is combinational – must
include all inputs in sensitivity list
Note: procedure resumes if any
bit in either vector changes

`timescale 1 ns/1 ns

module Add4(A, B, S);

input [3:0] A, B;
output [3:0] S;
reg [3:0] S;

always @(A, B) begin
S <= A + B;

end
endmodule

vldd_ch4_Add4.v

3

9

4-Bit Adder

"+" is built-in arithmetic operator
for addition

Built-in arithmetic operators
include:

+ : addition
- : subtraction
* : multiplication
/ : division
% : modulus
** : power (“a ** b” is a raised
to the power of b)

The operators are intentionally
defined to be similar to those in
the C programming language

`timescale 1 ns/1 ns

module Add4(A, B, S);

input [3:0] A, B;
output [3:0] S;
reg [3:0] S;

always @(A, B) begin
S <= A + B;

end
endmodule

vldd_ch4_Add4.v

10

4-Bit Adder Testbench

Standard testbench format
Needs more vectors than
shown
Should also be self-checking

Simulation yields
0011 + 0001 S_s is 0100

3 + 1 = 4

1100 + 0011 S_s is 1111
12 + 3 = 15

5 + 2 S_s is 0111
Last vector shows use of
decimal constant rather than
binary

`timescale 1 ns/1 ns

module Testbench();

reg [3:0] A_s, B_s;
wire [3:0] S_s;

Add4 CompToTest(A_s, B_s, S_s);

initial begin
A_s <= 4'b0011; B_s <= 4'b0001;
#10;
A_s <= 4'b1100; B_s <= 4'b0011;
#10;
A_s <= 4'd5; // Equivalent to 4'b0101
B_s <= 4'd2; // Equivalent to 4'b0010
// Good testbench needs more vectors

end
endmodule

vldd_ch4_Add4TB.v

11

4-Bit Adder with Carry-In and Carry-Out

Adders have carry-in and carry-out
bits

Extend Add4 with Ci, Co

S <= A + B + Ci
Yields correct sum

"+" operator handles different bit-
widths – extends Ci to 4 bits,
padded on left with 0s

But carry-out?
S is only 4 bits; Co is a fifth bit

Solution – Do 5-bit add, separate
fifth bit (carry-out) from lower four

Uses concatenate operator "{ }"
Uses blocking assignment "="
Both to be described now

`timescale 1 ns/1 ns

module Add4wCarry(A, B, Ci, S, Co);

input [3:0] A, B;
input Ci;
output [3:0] S;
reg [3:0] S;
output Co;
reg Co;

reg [4:0] A5, B5, S5;

always @(A, B, Ci) begin
A5 = {1'b0, A}; B5 = {1'b0, B};
S5 = A5 + B5 + Ci;
S <= S5[3:0];
Co <= S5[4];

end
endmodule

vldd_ch4_Add4wCarry.v

12

4-Bit Adder with Carry-In and Carry-Out
Concatenation Operator

Concatenation operator "{ }"
Joins bits from two or more
expressions

Expressions separated by commas
within { }

{1b'0, A} 5-bit value:
"0 A[3] A[2] A[1] A[0]"

{1b'0, 4b'0011} "00011"
{2b'11, 2b'00, 2b'01} "110001"

`timescale 1 ns/1 ns

module Add4wCarry(A, B, Ci, S, Co);

input [3:0] A, B;
input Ci;
output [3:0] S;
reg [3:0] S;
output Co;
reg Co;

reg [4:0] A5, B5, S5;

always @(A, B, Ci) begin
A5 = {1'b0, A}; B5 = {1'b0, B};
S5 = A5 + B5 + Ci;
S <= S5[3:0];
Co <= S5[4];

end
endmodule

vldd_ch4_Add4wCarry.v

4

13

4-Bit Adder with Carry-In and Carry-Out
Blocking and Non Blocking Assignment Statements

Blocking assignment statement
Uses "="
Variable is updated before execution
proceeds
Like variable update in C language

Non-blocking assignment statement
Uses "<="
Update is scheduled but doesn't
occur until later in simulation cycle
What we've been using until now

Guideline
Use blocking assignment when
computing intermediate values

`timescale 1 ns/1 ns

module Add4wCarry(A, B, Ci, S, Co);

input [3:0] A, B;
input Ci;
output [3:0] S;
reg [3:0] S;
output Co;
reg Co;

reg [4:0] A5, B5, S5;

always @(A, B, Ci) begin
A5 = {1'b0, A}; B5 = {1'b0, B};
S5 = A5 + B5 + Ci;
S <= S5[3:0];
Co <= S5[4];

end
endmodule

vldd_ch4_Add4wCarry.v

14

4-Bit Adder with Carry-In and Carry-Out

A5 = {1'b0, A} 5-bit version of A
B5 = {1'b0, B} 5-bit version of B
S5 = A5 + B5 + Ci 5-bit sum
Note:

Blocking assignment "=" means that
above values are updated immediately,
rather than being scheduled for update
later. Thus, subsequent statements use
updated values

S <= S5[3:0] 4-bit S gets 4 low bits
of S5

Part selection used to access multiple
bits within vector

Desired high and low bit positions
specified within [] separated by :

Co <= S5[4] Co gets 5th bit of S5,
which corresponds to the carry-out of
A+B+Ci

`timescale 1 ns/1 ns

module Add4wCarry(A, B, Ci, S, Co);

input [3:0] A, B;
input Ci;
output [3:0] S;
reg [3:0] S;
output Co;
reg Co;

reg [4:0] A5, B5, S5;

always @(A, B, Ci) begin
A5 = {1'b0, A}; B5 = {1'b0, B};
S5 = A5 + B5 + Ci;
S <= S5[3:0];
Co <= S5[4];

end
endmodule

vldd_ch4_Add4wCarry.v

15

4-Bit Adder with Carry-In and Carry-Out
Alternative Description

A more compact description is possible
Use concatenation on the left side of
assignment

{Co, S} <= A + B + Ci
Left side thus 5 bits wide

Rule
For the + operator, all operands extended
to width of widest operand, including left
side
Left side is 5 bits A, B, and Ci all
extended to 5 bits, left padded with 0s
E.g., A: 0011, B: 0001, Ci: 1
00011+00001+00000 yields 00100

Co gets first 0, S gets 0100
Though longer, previous description
synthesizes to same circuit

reg [4:0] A5, B5, S5; – Synthesize into
wires

`timescale 1 ns/1 ns

module Add4wCarry(A, B, Ci, S, Co);

input [3:0] A, B;
input Ci;
output reg [3:0] S;
output reg Co;

always @(A, B, Ci) begin
{Co, S} <= A + B + Ci;

end
endmodule

vldd_ch4_Add4wCarry2.v

16

4-Bit Adder with Carry-In and Carry-Out Testbench

Similar to earlier adder
testbench, with Co_s
Needs more vectors, should
also be made self-checking

`timescale 1 ns/1 ns

module Testbench();

reg [3:0] A_s, B_s;
reg Ci_s;
wire [3:0] S_s;
wire Co_s;

Add4wCarry CompToTest(A_s, B_s, Ci_s, S_s, Co_s);

initial begin
A_s <= 4'b0011; B_s <= 4'b0001;
Ci_s <= 0;
#10;
A_s <= 4'b1100; B_s <= 4'b0011;
Ci_s <= 1;
#10;
A_s <= 4'd5; // Equivalent to 4'b0101
B_s <= 4'd2; // Equivalent to 4'b0010
// Good testbench needs more vectors

end
endmodule

vldd_ch4_Add4wCarryTB.v

5

17

`timescale 1 ns/1 ns

module ShiftReg4(Q, Shr, Shr_in, Clk, Rst);

output [3:0] Q;
input Shr, Shr_in;
input Clk, Rst;

reg [3:0] R;

always @(posedge Clk) begin
if (Rst == 1)

R <= 4'b0000;
else if (Shr == 1) begin

R[3] <= Shr_in; R[2] <= R[3];
R[1] <= R[2]; R[0] <= R[1];

end
end

assign Q = R;
endmodule

4-Bit Shift Register

Shift Register
Consider a 4-bit shift register with
only a right shift control input

Either retains its current value or
shift the register contents right

Can again describe register
behaviorally

Perform shifting bit by bit, as in
previous multifunction register
example

Could also use concatenation
Replace bit-by-bit assignment with
single statement using
concatenation
R <= {Shr_in, R[3], R[2], R[1]}

What if the register has 32-bits?
Both bit-by-bit assignment and
concatenation become tedious for
large items
Could lead to errors

Q2 Q1 Q0Q3

Shr_in
Shr
Rst Retain Value

OperationShr

0
Shift right1

vldd_ch4_ShiftReg4.v 18

32-Bit Shift Register

Now consider a 32-bit shift
register with right shift
control input

Both bit by bit assignment
and concatenation become
cumbersome, tedious, and
error prone

Solution:
Use loop to perform shifting

Loop
Defines a set of statements
that will be repeatedly
executed some number of
times
Loop parameters control
execution of loop

vldd_ch4_ShiftReg32.v

`timescale 1 ns/1 ns

module ShiftReg32(Q, Shr, Shr_in, Clk, Rst);

output [31:0] Q;
input Shr, Shr_in;
input Clk, Rst;

reg [31:0] R;
integer Index;

always @(posedge Clk) begin
if (Rst == 1)

R <= 32'h00000000;
else if (Shr == 1) begin

R[31] <= Shr_in;
for (Index=0; Index<=30; Index=Index+1) begin

R[Index] <= R[Index+1];
end

end
end
assign Q = R;

endmodule

"for" loop explained on next slide

19

32-Bit Shift Register
for loop statement

for loop statement
Typically defines loop that
executes specified number of
times

Typically involves:
index variable declaration
Index variable initialization

executed only once
Loop condition checked

Usually involves index
Loop exits if not true

Loop body statement executed
Usually a begin-end block
Followed by execution of
index variable update

Loop thus assigns every R bit
to next higher bit

Last bit handled by statement
R[31] <= Shr_in; Assign
highest bit to shift input

vldd_ch4_ShiftReg32.v

`timescale 1 ns/1 ns

module ShiftReg32(Q, Shr, Shr_in, Clk, Rst);

output [31:0] Q;
input Shr, Shr_in;
input Clk, Rst;

reg [31:0] R;
integer Index;

always @(posedge Clk) begin
if (Rst == 1)

R <= 32'h00000000;
else if (Shr == 1) begin

R[31] <= Shr_in;
for (Index=0; Index<=30; Index=Index+1) begin

R[Index] <= R[Index+1];
end

end
end
assign Q = R;

endmodule

20

32-Bit Shift Register
Integer Data Type

Index declared as integer
integer

Another variable data type
Previous was “reg”

Bit or vector of bits

Integer can be negative or
positive (signed), 32-bits
Use when it makes code
clearer

Especially if item not
destined to become a
physical register

vldd_ch4_ShiftReg32.v

`timescale 1 ns/1 ns

module ShiftReg32(Q, Shr, Shr_in, Clk, Rst);

output [31:0] Q;
input Shr, Shr_in;
input Clk, Rst;

reg [31:0] R;
integer Index;

always @(posedge Clk) begin
if (Rst == 1)

R <= 32'h00000000;
else if (Shr == 1) begin

R[31] <= Shr_in;
for (Index=0; Index<=30; Index=Index+1) begin

R[Index] <= R[Index+1];
end

end
end
assign Q = R;

endmodule

6

21

32-Bit Shift Register
Relational and Logic Operators

"<=" – built-in relational
operator

Looks same as non
blocking assignment –
distinguished by how
operator is used

Built-in relational operators
> : greater than
< : less than
>= : greater than or equal
<= : less than or equal

vldd_ch4_ShiftReg32.v

`timescale 1 ns/1 ns

module ShiftReg32(Q, Shr, Shr_in, Clk, Rst);

output [31:0] Q;
input Shr, Shr_in;
input Clk, Rst;

reg [31:0] R;
integer Index;

always @(posedge Clk) begin
if (Rst == 1)

R <= 32'h00000000;
else if (Shr == 1) begin

R[31] <= Shr_in;
for (Index=0; Index<=30; Index=Index+1) begin

R[Index] <= R[Index+1];
end

end
end
assign Q = R;

endmodule

22

32-Bit Shift Register
Relational and Logic Operators

Built-in logical operators
! : logical negation
&& : logical AND
|| : logical OR

Built-in equality operators
== : logical equality
!= : logical inequality
=== : logical equality

including x and z bits
(more on this later)

!== : logical inequality
including x and z bits
(more on this later)

vldd_ch4_ShiftReg32.v

`timescale 1 ns/1 ns

module ShiftReg32(Q, Shr, Shr_in, Clk, Rst);

output [31:0] Q;
input Shr, Shr_in;
input Clk, Rst;

reg [31:0] R;
integer Index;

always @(posedge Clk) begin
if (Rst == 1)

R <= 32'h00000000;
else if (Shr == 1) begin

R[31] <= Shr_in;
for (Index=0; Index<=30; Index=Index+1) begin

R[Index] <= R[Index+1];
end

end
end
assign Q = R;

endmodule

23

32-Bit Shift Register Testbench

Testbench
Shifting bits individually into the
shift register would also be
tedious
Use for loops to simplify the
testbench

Shift 16 1s into register
Set register to shift right with
shift input of 1
for loop waits 16 clock cycles

Loop executes 16 time, each
time waiting for rising clock edge

Self-check verifies correctly
shifted register output

Shift 16 0s into register
for loop waits 16 clock cycles
Self-checks again

Good testbench would have more
vectors

vldd_ch4_ShiftReg32TB.v

...
// Vector Procedure

initial begin
Rst_s <= 1;
Shr_s <= 0; Shr_in_s <= 0;
@(posedge Clk_s);
#5 Rst_s <= 0;
@(posedge Clk_s);
#5 Shr_s <= 1; Shr_in_s <= 1;
for (Index=0; Index<=15; Index=Index+1) begin

@(posedge Clk_s);
end
#5;
if (Q_s != 32'hFFFF0000)

$display("Failed Q=FFFF0000");
Shr_s <= 1; Shr_in_s <= 0;
for (Index=0; Index<=15; Index=Index+1) begin

@(posedge Clk_s);
end
#5;
if (Q_s != 32'h0000FFFF)

$display("Failed Q=0000FFFF");
Shr_s <= 0;

end
endmodule

24

Testbench with File Input
– 32-Bit Shift Register

Testbench can read test vectors from an
input file

Compact
Allows for easy integration of new test vectors
without modifying testbench or recompiling
Can define several separate vector files to test
different aspects

File: document located on host computer
system, can be read from or written to

Verilog has built-in system procedures for files
Four types of procedures in Verilog

Initial and always – already seen
Function – Has at least one input argument,
returns a value, no time-controlling statements
(executes in one simulation time unit)
Task – Any number of arguments, no return
value, may have time-controlling statements

Testbench for the 32-Bit shift register reads
test vectors from input file

Input file specifies bits to be shifted into
register
Set register to shift right and read input bits
from file

vldd_ch4_ShiftReg32TBFileIO.v

integer FileId;
reg[8:0] BitChar;

...
// Vector Procedure
initial begin

FileId = $fopen("vectors.txt", "r");
if (FileId == 0)

$display("Could not open input file.");
else begin

Rst_s <= 1;
Shr_s <= 0; Shr_in_s <= 0;
@(posedge Clk_s);
#5 Rst_s <= 0;
@(posedge Clk_s);
#5 Shr_s <= 1;
while ($feof(FileId) == 0) begin

BitChar = $fgetc(FileId);
if (BitChar == "1") begin

Shr_in_s <= 1;
@(posedge Clk_s);

end
else if (BitChar == "0") begin

Shr_in_s <= 0;
@(posedge Clk_s);

end
end
$fclose(FileId);

end
Shr_s <= 0;

end
endmodule

file procedures to be described on next slide

7

25

Testbench with File Input
– System Procedures for Files

$fopen – Opens file for access
Arguments:

File name: "vectors.txt"
Access type: "r" means read, "w" write,
"a" append
Returns integer, used to identify
opened file (may be more than one file
open at one time); 0 means error

$feof – Returns 0 if end of file has not
been reached yet
$fgetc – Returns next character in file

Valid character is 8 bits
If error, returns 9-bit value 111111111

Thus, variable BitChar is 9 bits, not 8

$fclose – Closes previously-opened file

vldd_ch4_ShiftReg32TBFileIO.v

integer FileId;
reg[8:0] BitChar;

...
// Vector Procedure
initial begin

FileId = $fopen("vectors.txt", "r");
if (FileId == 0)

$display("Could not open input file.");
else begin

Rst_s <= 1;
Shr_s <= 0; Shr_in_s <= 0;
@(posedge Clk_s);
#5 Rst_s <= 0;
@(posedge Clk_s);
#5 Shr_s <= 1;
while ($feof(FileId) == 0) begin

BitChar = $fgetc(FileId);
if (BitChar == "1") begin

Shr_in_s <= 1;
@(posedge Clk_s);

end
else if (BitChar == "0") begin

Shr_in_s <= 0;
@(posedge Clk_s);

end
end
$fclose(FileId);

end
Shr_s <= 0;

end
endmodule

while loop to be described on next slide
26

Testbench with File Input
– While Loops

Uses another form of loop: while
If condition is true, executes loop body
statement (usually begin-end block)
Repeat

Both while and for loops are common
for loop typically used when number of
iterations is known (e.g., loop 16 times)
while loop typically used when number
of iterations not known

vldd_ch4_ShiftReg32TBFileIO.v

integer FileId;
reg[8:0] BitChar;

...
// Vector Procedure
initial begin

FileId = $fopen("vectors.txt", "r");
if (FileId == 0)

$display("Could not open input file.");
else begin

Rst_s <= 1;
Shr_s <= 0; Shr_in_s <= 0;
@(posedge Clk_s);
#5 Rst_s <= 0;
@(posedge Clk_s);
#5 Shr_s <= 1;
while ($feof(FileId) == 0) begin

BitChar = $fgetc(FileId);
if (BitChar == "1") begin

Shr_in_s <= 1;
@(posedge Clk_s);

end
else if (BitChar == "0") begin

Shr_in_s <= 0;
@(posedge Clk_s);

end
end
$fclose(FileId);

end
Shr_s <= 0;

end
endmodule

Entire vector procedure to be described on next slide

27

Testbench with File Input –
32-Bit Register

Open file containing test vectors
If file failed to open (maybe
doesn't exist), display error
message

Reset register
Enable shifting
While we haven't read the entire
vector file

Read next character from file
If 1, shift in a 1

Set shift input to 1, wait for clock
Else if 0, shift in a 0
Can’t just assign Shr_in_s <=
BitChar; one’s a bit, one’s a 9-bit
ASCII encoding of a character

When read entire file, close file
vldd_ch4_ShiftReg32TBFileIO.v

integer FileId;
reg[8:0] BitChar;

...
// Vector Procedure
initial begin

FileId = $fopen("vectors.txt", "r");
if (FileId == 0)

$display("Could not open input file.");
else begin

Rst_s <= 1;
Shr_s <= 0; Shr_in_s <= 0;
@(posedge Clk_s);
#5 Rst_s <= 0;
@(posedge Clk_s);
#5 Shr_s <= 1;
while ($feof(FileId) == 0) begin

BitChar = $fgetc(FileId);
if (BitChar == "1") begin

Shr_in_s <= 1;
@(posedge Clk_s);

end
else if (BitChar == "0") begin

Shr_in_s <= 0;
@(posedge Clk_s);

end
end
$fclose(FileId);

end
Shr_s <= 0;

end
endmodule

28

Testbench with File Input – 32-Bit Shift Register

Test vector file can contain as
few or as many test vectors as
desired

Can add new test vectors and
simulate without changing
testbench
Vectors of “1111111111111111”
and “0000000000000000” would
match previous testbench for 32-
bit shift register
Consider simulation only for

Testbench Simulation
Waveform shows simulation for
test vectors “11” and “00”
Value for Q_s displayed in
hexadecimal

11
00

vectors.txt

time (ns)
10 20 30 40

Shr_s

50 70

Shr_in_s

60 80

Clk_s

Rst_s

Q_s x... 00000000 80000000 C0000000 60000000 30000000

90 110100 120

8

29

Common Pitfall
Unsynthesizable Loop

Creating an unsynthesizable loop in a
description to be synthesized

Synthesis must be able to unroll the
loop into an equivalent straight-line
(no loop) sequence of statements

To know first statement and last
statement of sequence
Loop is thus just a shorthand for
those statements

Index<=30
Anything other than constant may
prevent unrolling

Index<=Index+1
Anything other than simple index
increment/decrement may prevent
unrolling

Likewise, while loops (even simple
ones) may not be unrolled

For synthesis, best to use only simple
for loop with constant bounds, and
simple index increment/decrement

for (Index=0; Index<=30; Index<=Index+1) begin
R(Index) <= R[Index+1];

end

Unrolling

R[0] <= R[1];
R[1] <= R[2];
...
R[30] <= R[31];

Index = 0;
while (Index <= 30) begin

... // loop statements
Index = Index + 1;

end

Some tools can unroll this while
loop, better to use a for loop

30

4-bit Unsigned/Signed Magnitude Comparator

Previously
Dealt only with unsigned numbers

input, output, reg declarations are
unsigned unless otherwise
specified

Now consider a simple magnitude
comparator that compares a 4-bit
unsigned number A with a 4-bit
signed number B, with outputs for
greater than, less than, and equal

A can be 0 to 15 (0000 to 1111)
B can be -8 to 7 (1000 to 0111)
Need to represent both unsigned
and signed numbers

A3A2A1A0 B3B2B1B0 Gt
Eq
Lt

4-bit magnitude comparator

31

4-bit Unsigned/Signed Magnitude Comparator

Declare A input as before, but declare B
input with signed keyword
When comparing A and B using "<", first
convert unsigned A to signed value using
$signed system function

"$signed(A)" would not work – changes
positive number to negative

e.g., 1000 would change from meaning 8
to meaning -8

Instead, first extend A to five bits
{1'b0,A} – e.g., 1000 becomes 01000

Then convert to signed
$signed({1'b0,A}) – e.g., 01000 as 5-bit
signed number is still 8 (due to 0 in
highest-order bit)

Operands of "<" automatically sign-
extended to widest operand's width

So B extended to 5-bits with sign bit
preserved

Comparison is thus correct

`timescale 1 ns/1 ns

module Comp4(A, B, Gt, Eq, Lt);

input [3:0] A;
input signed [3:0] B;
output Gt, Eq, Lt;
reg Gt, Eq, Lt;

always @(A, B) begin
if ($signed({1'b0,A}) < B) begin

Gt <= 0; Eq <= 0; Lt <= 1;
end
else if ($signed({1'b0,A}) > B) begin

Gt <= 1; Eq <= 0; Lt <= 0;
end
else begin

Gt <= 0; Eq <= 1; Lt <= 0;
end

end
endmodule

A3A2A1A0 B3B2B1B0 Gt
Eq
Lt

4-bit magnitude comparator

vldd_ch4_Comp4.v 32

4-bit Unsigned/Signed Magnitude Comparator

Performs comparison using if-else-if
construct

if A < B:
Set Lt to 1, Gt to 0, and Eq to 0
If B negative, A will always be
greater than B (A is always positive)

if (A > B)
Gt = 1, Lt = 0, and Eq = 0

If A is neither greater or less than
Eq = 1, Lt = 0, and Eq = 0

`timescale 1 ns/1 ns

module Comp4(A, B, Gt, Eq, Lt);

input [3:0] A;
input signed [3:0] B;
output Gt, Eq, Lt;
reg Gt, Eq, Lt;

always @(A, B) begin
if ($signed({1'b0,A}) < B) begin

Gt <= 0; Eq <= 0; Lt <= 1;
end
else if ($signed({1'b0,A}) > B) begin

Gt <= 1; Eq <= 0; Lt <= 0;
end
else begin

Gt <= 0; Eq <= 1; Lt <= 0;
end

end
endmodule

A3A2A1A0 B3B2B1B0 Gt
Eq
Lt

4-bit magnitude comparator

vldd_ch4_Comp4.v

9

33

4-bit Unsigned/Signed Magnitude Comparator

Testbench should test multiple
values for inputs A and B

Should perform comparisons for
both positive and negative values of
B
Should have at least one test case in
which A is greater than, less than,
and equal to B

Note that reg variable B_s, used to
connect with B, defined as signed
Vectors illustrate use of binary
constants as well as decimal
constants

Negative binary constant achieved
using 1 in high-order bit (two-'s
complement form)
Negative decimal constant requires
negative sign "-" in front of constant

`timescale 1 ns/1 ns

module Testbench();

reg [3:0] A_s;
reg signed [3:0] B_s;
wire Gt_s, Eq_s, Lt_s;

Comp4 CompToTest(A_s, B_s, Gt_s, Eq_s, Lt_s);

initial begin
A_s <= 4'b0011; B_s <= 4'b0001;
#10 A_s <= 4'b1111; B_s <= 4'b0111;
#10 A_s <= 4'b0111; B_s <= 4'b1011;
#10 A_s <= 4'b0001; B_s <= 4'b0010;
#10 A_s <= 4'b0001; B_s <= 4'b0001;
#10 A_s <= 4'b0000; B_s <= 4'b1111;
#10 A_s <= 4'd1; B_s <= -4'd1;
#10 A_s <= 4'd1; B_s <= -4'd8;
// Good testbench needs more vectors

end
endmodule

vldd_ch4_Comp4TB.v 34

4-bit Unsigned/Signed Magnitude Comparator

Simulation
First two vectors compare positive
values for both inputs

0011 > 0001 Gt_s = 1
1111 > 0111 Gt_s = 1

Third test compares A with negative B
0111 > 1011 Gt_s = 1

7 > -5

Fourth and fifth test should result in the
Lt_s and Eq_s output asserted,
respectively

0001 < 0010 Lt_s = 1
0001 = 0001 Eq_s = 1

Next test compares 0 to -1
0000 > 1111 Gt_s = 1

Next test compare 1 to -1
Last test compares 1 to -8

`timescale 1 ns/1 ns

module Testbench();

reg [3:0] A_s;
reg signed [3:0] B_s;
wire Gt_s, Eq_s, Lt_s;

Comp4 CompToTest(A_s, B_s, Gt_s, Eq_s, Lt_s);

initial begin
A_s <= 4'b0011; B_s <= 4'b0001;
#10 A_s <= 4'b1111; B_s <= 4'b0111;
#10 A_s <= 4'b0111; B_s <= 4'b1011;
#10 A_s <= 4'b0001; B_s <= 4'b0010;
#10 A_s <= 4'b0001; B_s <= 4'b0001;
#10 A_s <= 4'b0000; B_s <= 4'b1111;
#10 A_s <= 4'd1; B_s <= -4'd1;
#10 A_s <= 4'd1; B_s <= -4'd8;
// Good testbench needs more vectors

end
endmodule

vldd_ch4_Comp4TB.v

35

Common Pitfall

Unintentional use of one of
many of Verilog's automatic
conversions

B_s <= -4'd15
-4d'15

4-bit decimal 15 would be 1111
Negative of 1111 (15) is 10001
(-15) – Automatically converted
to 5 bits
Assignment to B_s drops the
high-order bit, making
B_s=0001

Many similar types of automatic
conversions in Verilog
Use great caution

`timescale 1 ns/1 ns

module Testbench();

reg [3:0] A_s;
reg signed [3:0] B_s;
wire Gt_s, Eq_s, Lt_s;

Comp4 CompToTest(A_s, B_s, Gt_s, Eq_s, Lt_s);

initial begin
...
#10 A_s <= 4'd1; B_s <= -4'd1;
#10 A_s <= 4'd1; B_s <= -4'd15;
// Good testbench needs more vectors

end
endmodule

36

4x32 Register File

Register Files
A register file is more efficient than
individual registers if we only need
access one or two registers at a time

Consider 4x32 register file (4
registers, each 32-bits wide)

Need decoder with enable
Simple extension of Ch 2 decoder

Need 32-bit register with parallel load
input and a tri-state buffered outputs

Implement as 32-bit register with
output enable

Output of all registers connected to
R_data

Only one register should output value
to bus
All other register should output high-
impedance

Can omit signal-strengthening driver
Synthesis tool would determine

when/where to insert driver

32

2

32

2
W_data

W_addr
W_en

R_data

R_addr
R_en

4×32
register file

Rst

10

37

32-Bit Register With Output Enable

High-impedance
Represents an output that is neither
driven high nor driven low
high-impedance written as z or Z

"S <= z;"
Allows for the outputs of several
components to be wired together

Only one component should output a 0 or 1
All other components should output z

Typically achieved using three-state
buffers

Register with Output Enable
Three-state buffers are part of register

High-Impedance – Z

QOE

0
Stored Value (0 or 1)1

Output Enable Operation

Q

IOE
Ld
Rst

32

32-bit Register with
Output Enable

32

32

2

32

2
W_data

W_addr
W_en

R_data

R_addr
R_en

4×32
register file

Rst

d0

d1

d2

d3
e

i0

d0

d1

d2

d3

W_en

W_addr

W_data

i1

2x4

32 32

32

32

32

32

i1
i0

e

2x4

load

load

load

load

reg0

reg1

reg2

reg3

R_en

R_addr

R_data
driver

bus

write
decoder

read
decoder

4x32 register file

38

32-Bit Register With Output
Enable

Describing a register with output enable
reg variable R used for storage

Register procedure
Resets register to 0s when Rst = 1
Stores register value in R when Ld = 1

High-Impedance – Z

QOE

0
Stored Value1

Output Enable Operation
Q

IOE
Ld
Rst

32

32-bit Register with
Output Enable

32

`timescale 1 ns/1 ns

module Reg32wOE(I, Q, Oe, Ld, Clk, Rst);

input [31:0] I;
output [31:0] Q;
reg [31:0] Q;
input Oe, Ld;
input Clk, Rst;

reg [31:0] R;

// Register Procedure
always @(posedge Clk) begin

if (Rst == 1)
R <= 32'd0;

else if (Ld == 1)
R <= I;

end

// Output Procedure
always @(R, Oe) begin

if (Oe == 1)
Q <= R;

else
Q <= 32'hZZZZZZZZ;

end
endmodule

vldd_ch4_Reg32wOE.v

39

32-Bit Register With
Output Enable

Output procedure
Combinational procedure that
controls register output
Oe = 1 Output is enabled

Q <= R;

Oe = 0 Output of register is
disabled

Output high-impedance
Q <= 32'hZZZZZZZZ;

High-Impedance – Z

QOE

0
Stored Value1

Output Enable Operation
Q

IOE
Ld
Rst

32

32-bit Register with
Output Enable

32

`timescale 1 ns/1 ns

module Reg32wOE(I, Q, Oe, Ld, Clk, Rst);

input [31:0] I;
output [31:0] Q;
reg [31:0] Q;
input Oe, Ld;
input Clk, Rst;

reg [31:0] R;

// Register Procedure
always @(posedge Clk) begin

if (Rst == 1)
R <= 32'd0;

else if (Ld == 1)
R <= I;

end

// Output Procedure
always @(R, Oe) begin

if (Oe == 1)
Q <= R;

else
Q <= 32'hZZZZZZZZ;

end
endmodule

vldd_ch4_Reg32wOE.v
40

32-Bit Register With
Output Enable

Alternative description
Replace Output procedure by a
single continuous assignment
statement (assign)

Q must be net, not variable

Uses conditional operator ? :
A ? B : C

If A is true (non-zero), result is B
If A is false (zero), result is C

Q = Oe ? R : 32'hZZZZZZZZ;
If Oe is 1, Q gets R
If Oe is 0, Q gets 32'hZZZZZZZZ

High-Impedance – Z

QOE

0
Stored Value1

Output Enable Operation
Q

IOE
Ld
Rst

32

32-bit Register with
Output Enable

32

`timescale 1 ns/1 ns

module Reg32wOE(I, Q, Oe, Ld, Clk, Rst);

input [31:0] I;
output [31:0] Q;
input Oe, Ld;
input Clk, Rst;

reg [31:0] R;

// Register Procedure
always @(posedge Clk) begin

if (Rst == 1)
R <= 32'd0;

else if (Ld == 1)
R <= I;

end

assign Q = Oe ? R : 32'hZZZZZZZZ;
endmodule

vldd_ch4_Reg32wOECond.v

Same behavior as previous
description, just more compact

11

41

32-Bit Register With Output Enable

Testbench
Reset register and enable output
Oe_s <= 1;

Load register with value
32'h0000000FF

Use self-check to verify correctness
New operator use

!==
Does bit-by-bit comparison
Handles z and x values

===
For bit-by-bit equality check
Handles z and x values

== and != don't handle z or x
Returns x (unknown) if z or x
present in either operand
!== and === never return x

Oe_s <= 0; Disable output
Use self-check to verify that output
is high-impedance vldd_ch4_Reg32wOETB.v

...
// Vector Procedure

initial begin
Rst_s <= 1;
Oe_s <= 1; Ld_s <= 0;
I_s <= 32'h00000000;
@(posedge Clk_s);
#5 Rst_s <= 0;
@(posedge Clk_s);
#5 Ld_s <= 1; I_s <= 32'h000000FF;
@(posedge Clk_s);
#5;
if (Q_s !== 32'h000000FF)

$display("Failed output enabled");
Ld_s <= 0; Oe_s <= 0;
#5;
if (Q_s !== 32'hZZZZZZZZ)

$display("Failed output disabled");
end

...

42

Structural 4x32
Register File

Register File
Structurally
connect
decoders and
registers to
create register
file

`timescale 1 ns/1 ns

module RegFile4x32(R_Addr,W_Addr,R_en,W_en,R_Data,W_Data,Clk,Rst);

input [1:0] R_Addr, W_Addr;
input R_en, W_en;
output [31:0] R_Data;
input [31:0] W_Data;
input Clk, Rst;

wire W_d3, W_d2, W_d1, W_d0;
wire R_d3, R_d2, R_d1, R_d0;

Dcd2x4wEn R_Dcd (R_Addr[1],R_Addr[0],R_en,
R_d3,R_d2,R_d1,R_d0);

Dcd2x4wEn W_Dcd (W_Addr[1],W_Addr[0],W_en,
W_d3,W_d2,W_d1,W_d0);

Reg32wOE Reg0 (W_Data,R_Data,R_d0,W_d0,Clk,Rst);
Reg32wOE Reg1 (W_Data,R_Data,R_d1,W_d1,Clk,Rst);
Reg32wOE Reg2 (W_Data,R_Data,R_d2,W_d2,Clk,Rst);
Reg32wOE Reg3 (W_Data,R_Data,R_d3,W_d3,Clk,Rst);

endmodule

vldd_ch4_RegFile4x32Struct.v

43

Multiple Drivers for One Net

Earlier examples all had exactly one driver per net
But structural register file has four drivers for net R_data

One from each Reg32wOE instantiation

Resolving multiple driven values into one value done as follows
0 and z 0
1 and z 1
z and z z
0 and 1 x
Note: Other resolutions also defined, such as 0 and 1 x, 0 and 0 0,
1 and 1 1, but we should not allow those situations to happen

44

Structural 4x32
Register File Testbench

Writes some values,
then reads and
checks

`timescale 1 ns/1 ns

module Testbench();

reg [1:0] R_Addr_s, W_Addr_s;
reg R_en_s, W_en_s;
wire [31:0] R_Data_s;
reg [31:0] W_Data_s;
reg Clk_s, Rst_s;

integer Index;

RegFile4x32 CompToTest
(R_Addr_s, W_Addr_s, R_en_s, W_en_s,
R_Data_s, W_Data_s, Clk_s, Rst_s);

// Clock Procedure
always begin

Clk_s <= 0;
#10;
Clk_s <= 1;
#10;

end vldd_ch4_RegFile4x32TB.v

// Vector Procedure
initial begin

Rst_s <= 1;
R_Addr_s <= 0'b00; W_Addr_s <= 0'b00;
R_en_s <= 0; W_en_s <= 0;
@(posedge Clk_s);
#5 Rst_s <= 0;
@(posedge Clk_s);
#5;
// Write values to registers
for (Index=0; Index<=3; Index=Index+1) begin

W_Addr_s <= Index; W_Data_s <= Index;
W_en_s <= 1;
@(posedge Clk_s);
#5;

end
W_en_s <= 0;
// Check for correct read values from registers
for (Index=0; Index<=3; Index=Index+1) begin

R_Addr_s <= Index; R_en_s <= 1;
@(posedge Clk_s);
#5;
if(R_Data_s !== Index)

$display("Failed case %d.", Index);
end
R_en_s <= 0;
#5;
if(R_Data_s !== 32'hZZZZZZZZ)

$display("Failed no read case.");
end

12

45

Behavioral 4x32
Register File

Register File
Can define behaviorally

Declares a 4-element array
Each element 32-bits
Element address range defines
starting and ending addresses for
array elements

Specified at end of declaration to
distinguish from vector range
specification

Array elements accessed using index
RegFile[0] <= 32'd0; – sets first
array element to 32 0s
Note that vector may be used as
array index: RegFile[W_Addr]

`timescale 1 ns/1 ns

module RegFile4x32(R_Addr, W_Addr, R_en, W_en,
R_Data, W_Data, Clk, Rst);

input [1:0] R_Addr, W_Addr;
input R_en, W_en;
output reg [31:0] R_Data;
input [31:0] W_Data;
input Clk, Rst;

reg [31:0] RegFile [0:3];

// Write procedure
always @(posedge Clk) begin

if (Rst==1) begin
RegFile[0] <= 32'd0;
RegFile[1] <= 32'd0;
RegFile[2] <= 32'd0;
RegFile[3] <= 32'd0;

end
else if (W_en==1) begin

RegFile[W_Addr] <= W_Data;
end

end

// Read procedure
always @* begin

if (R_en==1)
R_Data <= RegFile[R_Addr];

else
R_Data <= 32'hZZZZZZZZ;

end
endmodule
vldd_ch4_RegFile4x32Beh.v

46

Behavioral 4x32
Register File

Note: Must use earlier-described
implicit sensitivity list "@*" for Read
procedure

Because event control may not
include an array
Could instead include each array
element in list (RegFile[0],
RegFile[1], ...), but cumbersome,
especially for large arrays

`timescale 1 ns/1 ns

module RegFile4x32(R_Addr, W_Addr, R_en, W_en,
R_Data, W_Data, Clk, Rst);

input [1:0] R_Addr, W_Addr;
input R_en, W_en;
output reg [31:0] R_Data;
input [31:0] W_Data;
input Clk, Rst;

reg [31:0] RegFile [0:3];

// Write procedure
always @(posedge Clk) begin

if (Rst==1) begin
RegFile[0] <= 32'd0;
RegFile[1] <= 32'd0;
RegFile[2] <= 32'd0;
RegFile[3] <= 32'd0;

end
else if (W_en==1) begin

RegFile[W_Addr] <= W_Data;
end

end

// Read procedure
always @* begin

if (R_en==1)
R_Data <= RegFile[R_Addr];

else
R_Data <= 32'hZZZZZZZZ;

end
endmodule

vldd_ch4_RegFile4x32Beh.v

47

Common Pitfall
Using logical operators instead of bitwise

Both bitwise and logical AND, OR, and NOT
operators exist

Easy to mistakenly use logical operator instead
bitwise operator, and vice versa

May work for single bit inputs, but will produce
incorrect results for multi-bit vectors

Bitwise Operators:
&: bitwise AND
|: bitwise OR
~: bitwise NOT
Performs operation bit-by-bit resulting in multi-bit
vector as wide as largest input operand

Logical Operators:
&&: logical AND
||: logical OR
!: logical NOT (negation)
Performs operation by interpreting input operands as
logical values of true or false, resulting in a single bit
output of 0 or 1

if(A & 4'b0100) begin
BitSet <= 1;

end
else begin

BitSet <= 0;
end

if(A && 4'b0100) begin
BitSet <= 1;

end
else begin

BitSet <= 0;
end

Bitwise & operator results
in correct output

Logical && operator
results in incorrect output

48

Common Pitfall
Using logical operators instead of bitwise

Consider a simple if-else statement that will
determine if bit 2 of a 4-bit input A is 1, and
set an output BitSet accordingly

Using the bitwise & operator will result in
correct output

Assume A is 1000: 1000 & 0100 results in 0000
1&0=0, 0&1=0, 0&0=0, and 0&0=0

Within an if expression, a value of zero is
considered false and BitSet will be assigned the
correct value of 0 within else part

Using the logical && operator will result in
incorrect output

Assume A is 1000: 1000 && 0100 results in 1 –
both inputs are non-zero and will be interpreted
as true (1), where 1&&1=1
Within if expression, 1 is considered true and
BitSet will be assigned the incorrect value of 1
within if part

if(A & 4'b0100) begin
BitSet <= 1;

end
else begin

BitSet <= 0;
end

if(A && 4'b0100) begin
BitSet <= 1;

end
else begin

BitSet <= 0;
end

Bitwise & operator results
in correct output

Logical && operator
results in incorrect output

