

Multifunction Register					
Senavior timescale 1 ns/1 ns	_				
 Use if-else-if construct module MfReg4(I, Q, Ld, priority of control inputs o Rs thas first priority, then Ld, then Shr, and finally Shl Shift by assigning each bit Recall that statement order doesn't matter Use reg variable R for storage Best not to try to use port Q - good practice dictates not reading a module's output source form within a module reading a module's output reading a modul	<pre>Shr,i Shr_i Shr_i) beg ; R[2 R[0]</pre>	<pre>sh1, n, sh in in i <= R i</pre>	, Shr nl_in R[3] [1];	_in, Shl_in, C ;	lk, Rst);
 Use continuous assignment to update Q when R changes I dentifier on left of "=" must be a net, not a variable I dentifier on left of "=" must be a net, not a variable 	, beg ; R[1 R[3] Ld 0 0 0 1	Shr 0 1 X	R[0] [2]; Shl 0 1 X X	; Operation Maintain value Shft left Shift right Parallel load	

Multifunction Regist Behavior	er
 Question: Does the shown description, with Q declared as a reg, and "Q <= R;" as the last statement, correctly describe the register? 	<pre>`timescale 1 ns/1 ns module MfReg4(I, Q, Ld, Shr, Shl, Shr_in, Shl_in, Clk, Rst); input [3:0] I; output [3:0] Q; reg [3:0] Q; input Ld, Shr, Shl, Shr_in, Shl_in; input Clk, Rst; reg [3:0] R;</pre>
Answer: No. Q gets the present value of R, not the scheduled value.	<pre>always @(posedge Clk) begin if (Rst == 1) R <= 4'b000; else if (td == 1) R <= I; else if (5hr == 1) begin R[3] <= Shr_in; R[2] <= R[3]; R[1] <= R[2]; R[0] <= R[1]; end else if (5hl == 1) begin R[0] <= Shl_in; R[1] <= R[0]; R[2] <= R[1]; R[3] <= R[2]; end Q <= R; end endmodule Vida_chd_MfReg0frong.v</pre>
	5

4-Bit Adder with Carry-In and Carry Alternative Description	y-Out
 A more compact description is possible Use concatenation on the left side of assignment {Co, S} <= A + B + Ci Left side thus 5 bits wide Rule For the + operator, all operands extended to width of widest operand, including left side Left side is 5 bits, left padded with 0s E.g., A: 0011, B: 0001, Ci: 1 → 00011+00000 yields 00100 Co gets first 0, S gets 0100 Though longer, previous description synthesizes to same circuit reg [4:0] A5, B5, S5; - Synthesize into wires 	<pre>`timescale 1 ns/1 ns module Add4wCarry(A, B, Ci, S, Co); input [3:0] A, B; input Ci; output reg [3:0] S; output reg Co; always @(A, B, Ci) begin + {Co, S} <= A + B + Ci; end endmodule</pre>
	15

32-Bit Shift Register for loop statement	
 for loop statement Typically defines loop that executes specified number of times Typically involves: index variable declaration Index variable initialization executed only once Loop condition checked Usually involves index Loop body statement executed Usually a begin-end block Followed by execution of index variable update Loop thus assigns every R bit to next higher bit Last bit handled by statement R[31] <= Shr_in: → Assign highest bit to shift input 	<pre>`timescale 1 ns/1 ns module ShiftReg32(Q, Shr, Shr_in, Clk, Rst); output [31:0] Q; input Shr, Shr_in; input Clk, Rst; reg [31:0] R; integer Index; always @(posedge Clk) begin if (Rst == 1)</pre>
	vldd_ch4_ShiftReg32.v 19

32-Bit Shift Register Test	bench
 Testbench Shifting bits individually into the shift register would also be tedious Use for loops to simplify the testbench Shift 16 1s into register Set register to shift right with shift input of 1 for loop waits 16 clock cycles Loop executes 16 time, each time waiting for rising clock edge Self-check verifies correctly shifted register output Shift 16 0s into register for loop waits 16 clock cycles Self-checks again Good testbench would have more vectors Settement would have more vectors Shift and test the state of the sta	<pre>// Vector Procedure initial begin Rst_s <= 1; Shr_s <= 0; Shr_in_s <= 0; @(posedge Clk_s); #5 Rst_s <= 0; Shr_in_s <= 1; for (Index=0; Index=15; Index=Index+1) begin @(posedge Clk_s); end #5; if (0_s != 32'hFFFF0000) \$display("Failed Q=FFFF0000"); Shr_s <= 1; Shr_in_s <= 0; for (Index=0; Index=15; Index=Index+1) begin #6; if (0_s != 32'h0000FFFF) \$display("Failed Q=0000FFFF"); Shr_s <= 0; end endmodule</pre>
	vldd_ch4_ShiftReg32TB.v 23

Testbench with File Input – 32-Bit Register	<pre>integer FileId; reg[8:0] BitChar;</pre>
 Open file containing test vectors If file failed to open (maybe doesn't exist), display error message Reset register Enable shifting While we haven't read the entire vector file Read next character-from file If 1, shift in a 1 Set shift input to 1, wait for clock Else if 0, shift in a 0 Can't just assign Shr_in_s <= BitChar; one's a bit, one's a 9-bit ASCII encoding of a character When read entire file, close file 	<pre>// Vector Procedure initial begin Filed = \$fopen("vectors.txt", "r"); if (Filed = \$fopen("vectors.txt", "r"); if (Filed = \$0 \$display("Could not open input file."); else begin Ret_s <= 1; fsrs <= 0; fsr_s <= 0; e(posedge Clk_s); #5 Shr_s <= 0; bitChar = \$fopet(Filed); if (SitChar == 1°) begin bitChar == \$fopet(Filed); if (SitChar == "1°) begin Shr_in_s <= 1; else if (SitChar == "0°) begin Shr_in_s <= 0; end end sfr_s <= 0; end endmodule</pre>
	27

Common Pitfall	
 Unintentional use of one of many of Verilog's automatic conversions B_s <= -4'd15 -4d'15 -4d'1	<pre>`timescale 1 ns/1 ns module Testbench(); reg [3:0] A_s; reg signed [3:0] B_s; wire Gt_s, Eq_s, Lt_s; Comp4 CompToTest(A_s, B_s, Gt_s, Eq_s, Lt_s); initial begin #10 A_s <= 4'd1; B_s <= -4'd1; #10 A_s <= 4'd1; B_s <= -4'd15; // Good testbench needs more vectors end endmodule</pre>
	25

32-Bit Register With Output Enable	
 Output procedure Combinational procedure that controls register output Oe = 1 → Output is enabled Q <= R; Oe = 0 → Output of register is disabled Output high-impedance Q <= 32'hZZZZZZZ;	<pre>`timescale 1 ns/1 ns module Reg32woE(I, Q, Oe, Ld, Clk, Rst); input [31:0] I; output [31:0] Q; reg [31:0] Q; input Oe, Ld; input Ock, Rst; reg [31:0] R; // Register Procedure always @(posedge Clk) begin if (Rst == 1)</pre>
OE I Ld 32-bit Register with Rst Output Enable 32 32 0 432 0 High-Impedance- 1 Stored Value 0 0 0 0 0 0 0 0 0 0 0 0 0	<pre>// Output Procedure always @(R, Oe) begin</pre>

Structural 4x32 Register File	
 Register File Structurally connect decoders and registers to create register file 	<pre>`timescale 1 ns/1 ns module RegFile4x32(R_Addr,W_Addr,R_en,W_en,R_Data,W_Data,Clk,Rst); input [1:0] R_Addr, W_Addr; input [31:0] R_Data; input [31:0] R_Data; input Clk, Rst; wire W_d3, W_d2, W_d1, W_d0; wire R_d3, R_d2, R_d1, R_d0; Dcd2x4wEn R_Dcd (R_Addr[1],R_Addr[0],R_en,</pre>
	vldd_ch4_RegFile4x32Struct.v 42

Multiple Drivers for One Net	
 Earlier examples all had exactly one driver per net But structural register file has four drivers for net R_data One from each Reg32wOE instantiation Resolving multiple driven values into one value done as follows 0 and z → 0 1 and z → 1 z and z → z 0 and 1 → x Note: Other resolutions also defined, such as 0 and 1 → x, 0 and 0 → 0, 1 and 1 → 1, but we should not allow those situations to happen 	
4	13

Structural 4x32 Register File Testbench	
<pre>`timescale 1 ns/1 ns module Testbench(); reg [1:0] R_Addr_s, W_Addr_s; reg R_en_s, W.en_s; wire [31:0] R_Data_s; reg [31:0] W_Data_s; reg [31:0] W_Data_s;</pre>	<pre>// Vector Procedure initial begin Ret_g <= 1; R_Addr_g <= 0'b00; W_Addr_g <= 0'b00; R_en_g <= 0; W_en_g <= 0; @(posedge Clk_g); #5 Rst_g <= 0; @(posedge Clk_s); #5;</pre>
integer Index; RegFile4x32 CompToTest (R_Addr_s, W_Addr_s, R_en_s, W_en_s, R_Data_s, W_Data_s, Clk_s, Rst_s);	<pre>// Write values to registers for (Index=0; Index=3; Index=Index+1) begin W_Addr_s <= Index; W_Data_s <= Index; W_en_s << 1; @(posedge Clk_s); #5; end</pre>
<pre>// Clock Procedure always begin Clk_s <= 0; #10; Clk_s <= 1; #10; end vldd_ch4_RegFile4x12TB.v</pre>	<pre>Mu W_en_s <= 0; // Check for correct read values from registers for (Index=0; Index<=3; Index=Index+1) begin R_Addr_s <= Index; R_en_s <= 1; @(posedge Clk_s); #5; if(R_Data_s !== Index) \$display("Failed case %d.", Index); end</pre>
 Writes some values, then reads and checks 	R_en_s <= 0; #5; if(R_Data_s !== 32'hZZZZZZZZ) \$display("Failed no read case."); end 44

