
1

ECE 274 Digital Logic

Combinational Logic Design using Verilog
Verilog for Digital Design Ch. 1 & 2

2

Digital Systems and HDLs

  Typical digital components per IC
  1960s/1970s: 10-1,000
  1980s: 1,000-100,000
  1990s: Millions
  2000s: Billions

  1970s
  IC behavior documented using

combination of schematics,
diagrams, and natural language
(e.g., English)

  1980s
  Simulating circuits becoming more

important
  Schematics commonplace
  Simulating schematic helped

ensure circuit was correct before
costly implementation

n1

n0

s0 s1
clk

Combinational Logic

State register

b x
"The system has four states.
When in state Off, the
system outputs 0 and stays
in state Off until the input
becomes 1. In that case, the
system enters state On1,
followed by On2, and then
On3, in which the system
outputs 1. The system then
returns to state Off."

Inputs: b; Outputs: x

On2 On1 On3

Off

x=1 x=1 x=1

x=0
b ’

b
diagrams

schematics natural
language

100,000
10,000

1,000
100

10

19
97

20
00

20
03

20
06

20
09

20
12

20
15

20
18

 Tr
an

si
st

or
s

pe
r I

C
 (m

ill
io

ns
)

3

Verilog

  Verilog
  Defined in 1985 at Gateway Design Automation Inc.,

which was then acquired by Cadence Design
Systems

  C-like syntax
  Initially a proprietary language, but became open

standard in early 1990s, then IEEE standard
("1364") in 1995, revised in 2002, and again in 2005.

  Other HDLs
  VHDL

  VHSIC Hardware Description Language / defined in
1980s / U.S. Dept. of Defense project / Ada-like
syntax / IEEE standard ("1076") in 1987

  VHDL & Verilog very similar in capabilities, differ mostly
in syntax

  SystemC
  Defined in 2000s by several companies / C++ libraries

and macro routines / IEEE standard ("1666") in 2005
  Excels for system-level; cumbersome for logic level

  SystemVerilog
  System-level modeling extensions to Verilog / IEEE

Standard ("1800") in 2005

module DoorOpener(C,H,P,F);
 input C, H, P;
 output F;
 reg F;

 always @(C,H,P)
 begin
 F <= (~C) & (H | P);
 end
endmodule

ENTITY DoorOpener IS
 PORT (c, h, p: IN std_logic;
 f: OUT std_logic);
END DoorOpener;

ARCHITECTURE Beh OF DoorOpener IS
BEGIN
 PROCESS(c, h, p)
 BEGIN
 f <= NOT(c) AND (h OR p);
 END PROCESS;
END Beh;

#include "systemc.h"
SC_MODULE(DoorOpener)
{
 sc_in<sc_logic> c, h, p;
 sc_out<sc_logic> f;

 SC_CTOR(DoorOpener)
 {
 SC_METHOD(comblogic);
 sensitive << c << h << p;
 }

 void comblogic()
 {
 f.write((~c.read()) & (h.read() | p.read()));
 }
};

4

AND/OR/NOT Gates
Verilog Modules and Ports

  module – Declares a new type of component
  Named “And2" in first example above
  Includes list of ports (module's inputs and outputs)

  input – List indicating which ports are inputs
  output – List indicating which ports are outputs
  Each port is a bit – can have value of 0, 1, or x (unknown value)
  Note: Verilog already has built-in primitives for logic gates, but instructive to build them

Y
X

F

module And2(X, Y, F);

 input X, Y;
 output F;
 ...

module Or2(X, Y, F);

 input X, Y;
 output F;
 ...

Y
X

F X F

module Inv(X, F);

 input X;
 output F;
 ...

vldd_ch2_And2.v vldd_ch2_Or2.v
vldd_ch2_Inv.v

2

5

AND/OR/NOT Gates
Modules and Ports

  Verilog has several dozen keywords
  User cannot use keywords when naming items like modules or ports
  module, input, and output are keywords above
  Keywords must be lower case, not UPPER CASE or a MixTure thereof

  User-defined names – Identifiers
  Begin with letter or underscore (_), optionally followed by any sequence of letters, digits,

underscores, and dollar signs ($)
  Valid identifiers: A, X, Hello, JXYZ, B14, Sig432, Wire_23, _F1, F$2, _Go_$_$, _, Input

  Note: "_" and "Input" are valid, but unwise
  Invalid identifiers: input (keyword), $ab (doesn't start with letter or underscore), 2A (doesn't start with

letter or underscore)
  Note: Verilog is case sensitive. Sig432 differs from SIG432 and sig432

  We'll initially capitalize identifiers (e.g., Sig432) to distinguish from keywords

Y
X

F

module And2(X, Y, F);

 input X, Y;
 output F;
 ...

module Or2(X, Y, F);

 input X, Y;
 output F;
 ...

Y
X

F X F

module Inv(X, F);

 input X;
 output F;
 ...

vldd_ch2_And2.v vldd_ch2_Or2.v
vldd_ch2_Inv.v 6

AND/OR/NOT Gates
Modules and Ports

  Q: Begin a module definition for a 4x1 multiplexor
  Inputs: I3, I2, I1, I0, S1, S0. Outputs: D I0

Mux4

I2
I1

I3
S1 S0

D

4x1 mux

vldd_ch2_Mux4Beh.v

module Mux4(I3, I2, I1, I0, S1, S0, D);

 input I3, I2, I1, I0;
 input S1, S0;
 output D;
 ...

Note that input ports above are separated into
two declarations for clarity

7

AND/OR/NOT Gates
Module Procedures—always

  One way to describe a module's behavior
uses an "always" procedure
  always – Procedure that executes repetitively

(infinite loop) from simulation start
  @ – event control indicating that statements

should only execute when values change
  "(X,Y)" – execute if X changes or Y changes

(change known as an event)
  Sometimes called “sensitivity list”
  We’ll say that procedure is “sensitive to X and Y”

  "F <= X & Y;" – Procedural statement that
sets F to AND of X, Y

  & is built-in bit AND operator
  <= assigns value to variable

  reg – Declares a variable data type, which
holds its value between assignments

  Needed for F to hold value between
assignments

  Note: "reg", short for "register", is an
unfortunate name. A reg variable may or may
not correspond to an actual physical register.
There obviously is no register inside an AND
gate.

y
x

F

vldd_ch2_And2.v

wait until X or
Y changes

F <= x AND y

module And2(X, Y, F);

 input X, Y;
 output F;
 reg F;

 always @(X, Y) begin
 F <= X & Y;
 end

endmodule

8

AND/OR/NOT Gates
Module Procedures—always

  Q: Given that "|" and "~" are built-in operators for OR and NOT,
complete the modules for a 2-input OR gate and a NOT gate

vldd_ch2_Or2.v
vldd_ch2_Inv.v

module Or2(X, Y, F);

 input X, Y;
 output F;

y
x

F x F

module Inv(X, F);

 input X;
 output F;

 reg F;

 always @(X, Y) begin
 F <= X | Y;
 end

endmodule

 reg F;

 always @(X) begin
 F <= ~X;
 end

endmodule

3

9

AND/OR/NOT Gates
Simulation and Testbenches — A First Look

  How does our new module behave?
  Simulation

  User provides input values, simulator generates
output values

  Test vectors – sequence of input values
  Waveform – graphical depiction of sequence `timescale 1 ns/1 ns

module And2(X, Y, F);

 input X, Y;
 output F;
 reg F;

 always @(X, Y) begin
 F <= X & Y;
 end

endmodule

Timescale directive is for
simulation. More later.

time

1
0 X

Y 1
0

User provides test
vectors

F 1
0

Simulator generates
output values based
on HDL description

Simulator

vl
dd

_c
h2

_A
nd

2.
v

vldd_ch2_And2.v 10

AND/OR/NOT Gates
Simulation and Testbenches — A First Look

  Instead of drawing test vectors, user
can describe them with HDL

`timescale 1 ns/1 ns

module And2(X, Y, F);

 input X, Y;
 output F;
 reg F;

 always @(X, Y) begin
 F <= X & Y;
 end

endmodule

F 1
0

1
0 X

Y 1
0

time
 (ns) 10 20 30

Simulator

vl
dd

_c
h2

_A
nd

2.
v

...
Y_s <= 0; X_s <= 0;
#10 Y_s <= 0; X_s <= 1;
#10 Y_s <= 1; X_s <= 0;
#10 Y_s <= 1; X_s <= 1;
...

"#10" –
Tells simulator to keep present
values for 10 ns, before
executing the next statement

vldd_ch2_And2.v

11

AND/OR/NOT Gates
Simulation and Testbenches

  HDL testbench
  Module with no ports
  Declare reg variable for each input

port, wire for each output port
  Instantiate module, map variables

to ports (more in next section)
  Set variable values at desired times

`timescale 1 ns/1 ns

module Testbench();

 reg X_s, Y_s;
 wire F_s;

 And2 CompToTest(X_s, Y_s, F_s);

 initial begin
 // Test all possible input combinations
 Y_s <= 0; X_s <= 0;
 #10 Y_s <= 0; X_s <= 1;
 #10 Y_s <= 1; X_s <= 0;
 #10 Y_s <= 1; X_s <= 1;
 end

endmodule

Testbench

CompToTest
(And2)

X
Y F

X_s
Y_s F_s

pr
oc

ed
ur

e

More information
on next slides

vldd_ch2_And2TB.v

Idea: Create new "Testbench" module that
provides test vectors to component's inputs

Note: CompToTest short for Component To Test

12

AND/OR/NOT Gates
Simulation and Testbenches

  wire – Declares a net data type, which
does not store its value
  Vs. reg data type that stores value
  Nets used for connections
  Net's value determined by what it is

connected to
  initial –procedure that executes at

simulation start, but executes only once
  Vs. "always" procedure that also

executes at simulation start, but that
repeats

  # – Delay control – number of time
units to delay this statement's execution
relative to previous statement
  `timescale – compiler directive telling

compiler that from this point forward, 1
time unit means 1 ns

  Valid time units – s (seconds), ms
(milliseconds), us (microseconds), ns
(nanoseconds), ps (picoseconds), and fs
(femtoseconds)

  1 ns/1 ns – time unit / time precision.
Precision is for internal rounding. For our
purposes, precision will be set same as
time unit.

`timescale 1 ns/1 ns

module Testbench();

 reg X_s, Y_s;
 wire F_s;

 And2 CompToTest(X_s, Y_s, F_s);

 initial begin
 // Test all possible input combinations
 Y_s <= 0; X_s <= 0;
 #10 Y_s <= 0; X_s <= 1;
 #10 Y_s <= 1; X_s <= 0;
 #10 Y_s <= 1; X_s <= 1;
 end

endmodule

vldd_ch2_And2TB.v

Note: We appended "_s" to reg/wire identifiers to distinguish
them from ports, though not strictly necessary

4

13

AND/OR/NOT Gates
Simulation and Testbenches

  Provide testbench file to simulator
  Simulator generates waveforms
  We can then check if behavior looks

correct

Simulator

vld
d_

ch
2_

And
2T

B.v

F_s 1
0

1
0 X_s

Y_s 1
0

time
 (ns) 10 20 30

vldd_ch2_And2TB.v

`timescale 1 ns/1 ns

module Testbench();

 reg X_s, Y_s;
 wire F_s;

 And2 CompToTest(X_s, Y_s, F_s);

 initial begin
 // Test all possible input combinations
 Y_s <= 0; X_s <= 0;
 #10 Y_s <= 0; X_s <= 1;
 #10 Y_s <= 1; X_s <= 0;
 #10 Y_s <= 1; X_s <= 1;
 end

endmodule

14

Combinational Circuits
Component Instantiations

  Circuit – A connection of modules
  Also known as structure
  A circuit is a second way to describe a

module
  vs. using an always procedure, as earlier

  Instance – An occurrence of a module in a
circuit

  May be multiple instances of a module
  e.g., Car's modules: tires, engine, windows,

etc., with 4 tire instances, 1 engine instance,
6 window instances, etc.

Module instances

Y
X

F X F

Modules to be used

N2
N1 And2_1

Inv_1

K
P
S

W

BeltWarn

And2_2

15

Combinational Circuits
Module Instantiations

  Creating a circuit
1.  Start definition of a new module
2.  Declare nets for connecting module

instances
  N1, N2
  Note: W is also a declared as a net.

By defaults outputs are considered
wire nets unless explicitly declared as
a reg variable

3.  Create module instances, create
connections

Y
X

F X F

N2
N1 And2_1

Inv_1

K
P
S

W

BeltWarn

And2_2 “BeltWarn” example: Turn on
warning light (w=1) if car key is

in ignition (k=1), person is
seated (p=1), and seatbelt is not

fastened (s=0)

`timescale 1 ns/1 ns

module BeltWarn(K, P, S, W);

 input K, P, S;
 output W;

 wire N1, N2;

 And2 And2_1(K, P, N1);
 Inv Inv_1(S, N2);
 And2 And2_2(N1, N2, W);

endmodule

vldd_ch2_BeltWarnStruct.v

16

Combinational Circuits
Module Instantiations

  Module instantiation
statement

vldd_ch2_BeltWarnStruct.v

 And2 And2_1(K, P, N1);

Name of module to instantiate

Name of new module instance
Must be distinct; hence And2_1 and And2_2

Connects instantiated module's
ports to nets and variables

`timescale 1 ns/1 ns

module BeltWarn(K, P, S, W);

 input K, P, S;
 output W;

 wire N1, N2;

 And2 And2_1(K, P, N1);
 Inv Inv_1(S, N2);
 And2 And2_2(N1, N2, W);

endmodule

Note: Ports ordered
as in original And2
module definition

N2
N1

And2_1

Inv_1

K
P
S

W

BeltWarn

And2_2

5

17

Combinational Circuits
Module Instantiations

  Q: Complete the 2x1
mux circuit's module
instantiations

vldd_ch2_Mux2Struct.v

`timescale 1 ns/1 ns

module Mux2(I1, I0, S0, D);

 input I1, I0;
 input S0;
 output D;

I0
Mux2

I1
S0

D

S0

D
I0
I1

 Inv Inv_1 (S0, N1);
 And2 And2_1 (I0, N1, N2);
 And2 And2_2 (I1, S0, N3);
 Or2 Or2_1 (N2, N3, D);

endmodule

N1
N2

N3 2. Declare nets
for internal wires

3. Create module instances
and connect ports Inv_1

And2_1

And2_2

Or2_1

 wire N1, N2, N3; (Draw desired circuit,
if not already done)

1. Start definition of a new
module (done)

18

Combinational Circuit Structure
Simulating the Circuit

  Same testbench format for BeltWarn
module as for earlier And2 module

vldd_ch2_BeltWarnTB.v

K
P
S

W

BeltWarn

Testbench

CompToTest
(And2)

X
Y F

X_s
Y_s F_s

pr
oc

ed
ur

e

Testbench

CompToTest
(BeltWarn)

K
P W

K_s
P_s W_s

pr
oc

ed
ur

e

S S_s

`timescale 1 ns/1 ns

module Testbench();

 reg X_s, Y_s;
 wire F_s;

 And2 CompToTest(X_s, Y_s, F_s);

 initial begin
 // Test all possible input combinations
 Y_s <= 0; X_s <= 0;
 #10 Y_s <= 0; X_s <= 1;
 #10 Y_s <= 1; X_s <= 0;
 #10 Y_s <= 1; X_s <= 1;
 end

endmodule

`timescale 1 ns/1 ns

module Testbench();

 reg K_s, P_s, S_s;
 wire W_s;

 BeltWarn CompToTest(K_s, P_s, S_s, W_s);

 initial begin
 K_s <= 0; P_s <= 0; S_s <= 0;
 #10 K_s <= 0; P_s <= 1; S_s <= 0;
 #10 K_s <= 1; P_s <= 1; S_s <= 0;
 #10 K_s <= 1; P_s <= 1; S_s <= 1;
 end

endmodule

19

`timescale 1 ns/1 ns

module Testbench();

 reg K_s, P_s, S_s;
 wire W_s;

 BeltWarn CompToTest(K_s, P_s, S_s, W_s);

 initial begin
 K_s <= 0; P_s <= 0; S_s <= 0;
 #10 K_s <= 0; P_s <= 1; S_s <= 0;
 #10 K_s <= 1; P_s <= 1; S_s <= 0;
 #10 K_s <= 1; P_s <= 1; S_s <= 1;
 end

endmodule

Combinational Circuit Structure
Simulating the Circuit

  Simulate testbench file to obtain
waveforms

vldd_ch2_BeltWarnTB.v

Simulator

vl
dd

_c
h2

_B
el

tW
ar

nT
B.

v

W_s 1
0

1
0 P_s

S_s 1
0

time (ns) 10 20 30

1
0 K_s

20

`timescale 1 ns/1 ns

module Testbench();

 reg K_s, P_s, S_s;
 wire W_s;

 BeltWarn CompToTest(K_s, P_s, S_s, W_s);

 initial begin
 K_s <= 0; P_s <= 0; S_s <= 0;
 #10 K_s <= 0; P_s <= 1; S_s <= 0;
 #10 K_s <= 1; P_s <= 1; S_s <= 0;
 #10 K_s <= 1; P_s <= 1; S_s <= 1;
 end

endmodule

Combinational Circuit Structure
Simulating the Circuit

  More on testbenches
  Note that a single module instantiation

statement used
  reg and wire declarations (K_s, P_s,

S_s, W_s) used because procedure
cannot access instantiated module's
ports directly

  Inputs declared as regs so can assign
values (which are held between
assignments)

  Note module instantiation statement
and procedure can both appear in one
module

vldd_ch2_BeltWarnTB.v

6

21

Top-Down Design – Combinational Behavior to Structure

  Designer may initially know system behavior, but not
structure
  BeltWarn: W = KPS'

  Top-down design
  Capture behavior, and simulate
  Capture structure (circuit), simulate again
  Gets behavior right first, unfettered by complexity of creating structure

Capture
behavior

Simulate
W_s
P_s
S_s
K_s

Capture
structure

Simulate
W_s
P_s
S_s
K_s

Should be
the same

22

Top-Down Design – Combinational Behavior to Structure
Always Procedures with Assignment Statements

  How describe behavior? One way:
Use an always procedure
  Sensitive to K, P, and S

  Procedure executes only if change
occurs on any of those inputs

  Simplest procedure uses one
assignment statement

  Simulate using testbench (same as
shown earlier) to get waveforms

  Top-down design
  Proceed to capture structure,

simulate again using same testbench
– result should be the same
waveforms

`timescale 1 ns/1 ns

module BeltWarn(K, P, S, W);

 input K, P, S;
 output W;
 reg W;

 always @(K, P, S) begin
 W <= K & P & ~S;
 end
endmodule

vldd_ch2_BeltWarnBeh.v

W_s 1
0

1
0 P_s

S_s 1
0

time
(ns) 10 20 30 40

1
0 K_s

23

Top-Down Design – Combinational Behavior to Structure
Procedures with Assignment Statements

  Procedural assignment statement
  Assigns value to variable
  Right side may be expression of operators

  Built-in bit operators include
& AND | OR ~ NOT
^ XOR ~^ XNOR

  Q: Create an always procedure to
compute:

  F = C'H + CH'

vldd_ch2_BeltWarnBeh.v
Answer 1:
always @(C,H) begin
 F <= (~C&H) | (C&~H);
end

Answer 2:
always @(C,H)
begin
 F <= C ^ H;
end

`timescale 1 ns/1 ns

module BeltWarn(K, P, S, W);

 input K, P, S;
 output W;
 reg W;

 always @(K, P, S) begin
 W <= K & P & ~S;
 end
endmodule

24

Top-Down Design – Combinational Behavior to Structure
Procedures with Assignment Statements

  Procedure may have multiple
assignment statements

vldd_ch2_TwoOutputBeh.v

`timescale 1 ns/1 ns

module TwoOutputEx(A, B, C, F, G);

 input A, B, C;
 output F, G;
 reg F, G;

 always @(A, B, C) begin
 F <= (B & B) | ~C;
 G <= (A & B) | (B & C);
 end
endmodule

7

25

Top-Down Design – Combinational Behavior to Structure
Procedures with If-Else Statements

  Process may use if-else statements
(a.k.a. conditional statements)
  if (expression)

  If expression is true (evaluates to
nonzero value), execute
corresponding statement(s)

  If false (evaluates to 0), execute
else’s statement (else part is
optional)

  Example shows use of operator ==
 logical equality, returns true/false
(actually, returns 1 or 0)

  True is nonzero value, false is zero

vldd_ch2_BeltWarnBehIf.v

`timescale 1 ns/1 ns

module BeltWarn(K, P, S, W);

 input K, P, S;
 output W;
 reg W;

 always @(K, P, S) begin
 if ((K & P & ~S) == 1)
 W <= 1;
 else
 W <= 0;
 end
endmodule

26

Top-Down Design – Combinational Behavior to Structure
Procedures with If-Else Statements

  More than two possibilities
  Handled by stringing if-else

statements together
  Known as if-else-if construct

  Example: 4x1 mux behavior
  Suppose S1S0 change to 01

  if’s expression is false
  else's statement executes,

which is an if statement
whose expression is true

vldd_ch2_Mux4Beh.v

`timescale 1 ns/1 ns

module Mux4(I3, I2, I1, I0, S1, S0, D);

 input I3, I2, I1, I0;
 input S1, S0;
 output D;
 reg D;

 always @(I3, I2, I1, I0, S1, S0)
 begin
 if (S1==0 && S0==0)
 D <= I0;
 else if (S1==0 && S0==1)
 D <= I1;
 else if (S1==1 && S0==0)
 D <= I2;
 else
 D <= I3;
 end
endmodule

Suppose
S1S0

change to
01

Note: The following indentation shows if
statement nesting, but is unconventional:

if (S1==0 && S0==0)
 D <= I0;
else
 if (S1==0 && S0==1)
 D <= I1;
 else
 if (S1==1 && S0==0)
 D <= I2;
 else
 D <= I3;

&& logical AND

& : bit AND (operands are bits, returns bit)
&& : logical AND (operands are true/false

values, returns true/false)

27

Top-Down Design – Combinational Behavior to Structure
Procedures with If-Else Statements

  Q: Create procedure describing
behavior of a 2x4 decoder using if-else-
if construct

vldd_ch2_Dcd2x4Beh.v

`timescale 1 ns/1 ns

module Dcd2x4(I1, I0, D3, D2, D1, D0);

 input I1, I0;
 output D3, D2, D1, D0;

I0
I1

D0
D1
D2
D3

2x4 decoder

 reg D3, D2, D1, D0;

 always @(I1, I0)
 begin
 if (I1==0 && I0==0)
 begin
 D3 <= 0; D2 <= 0;
 D1 <= 0; D0 <= 1;
 end
 else if (I1==0 && I0==1)
 begin
 D3 <= 0; D2 <= 0;
 D1 <= 1; D0 <= 0;
 end
 else if (I1==1 && I0==0)
 begin
 D3 <= 0; D2 <= 1;
 D1 <= 0; D0 <= 0;
 end
 else
 begin
 D3 <= 1; D2 <= 0;
 D1 <= 0; D0 <= 0;
 end
 end
endmodule

Order of assignment statements does
not matter.

Placing two statements on one line
does not matter.

To execute multiple statements if
expression is true, enclose them
between "begin" and "end"

28

Top-Down Design – Combinational Behavior to Structure

  Top-down design
  Capture behavior, and simulate
  Capture structure using a second

module, and simulate

vldd_ch2_BeltWarnStruct.v

`timescale 1 ns/1 ns

module BeltWarn(K, P, S, W);

 input K, P, S;
 output W;

 wire N1, N2;

 And2 And2_1(K, P, N1);
 Inv Inv_1(S, N2);
 And2 And2_2(N1, N2, W);

endmodule

`timescale 1 ns/1 ns

module BeltWarn(K, P, S, W);

 input K, P, S;
 output W;
 reg W;

 always @(K, P, S) begin
 W <= K & P & ~S;
 end
endmodule

Capture
behavior

Simulate
W_s
P_s
S_s
K_s

Capture
structure

Simulate
W_s
P_s
S_s
K_s

Should be
the same

vldd_ch2_BeltWarnBeh.v

8

29

Top-Down Design – Combinational Behavior to Structure
Common Pitfall – Missing Inputs from Event Control Expression

  Pitfall – Missing inputs from event control’s
sensitivity list when describing combinational
behavior
  Results in sequential behavior
  Wrong 4x1 mux example

  Has memory
  No compiler error

  Just not a mux

vldd_ch2_Mux4Wrong.v

`timescale 1 ns/1 ns

module Mux4(I3, I2, I1, I0, S1, S0, D);

 input I3, I2, I1, I0;
 input S1, S0;
 output D;
 reg D;

 always @(S1, S0)
 begin
 if (S1==0 && S0==0)
 D <= I0;
 else if (S1==0 && S0==1)
 D <= I1;
 else if (S1==1 && S0==0)
 D <= I2;
 else
 D <= I3;
 end
endmodule D

S1
S0

I3
I1

Missing I3-I0 from
sensitivity list

Recomputes D if S1
or S0 changes

Fails to recompute D if I3
(or I2, I1, I0) changes

Reminder
•  Combinational behavior: Output

value is purely a function of the
present input values

•  Sequential behavior: Output
value is a function of present and
past input values, i.e., the system
has memory

30

Top-Down Design – Combinational Behavior to Structure
Common Pitfall – Missing Inputs from Event Control Expression

  Verilog provides mechanism to help avoid
this pitfall
  @* – implicit event control expression

  Automatically adds all nets and variables
that are read by the controlled statement or
statement group

  Thus, @* in example is equivalent to
@(S1,S0,I0,I1,I2,I3)

  @(*) also equivalent

`timescale 1 ns/1 ns

module Mux4(I3, I2, I1, I0, S1, S0, D);

 input I3, I2, I1, I0;
 input S1, S0;
 output D;
 reg D;

 always @*
 begin
 if (S1==0 && S0==0)
 D <= I0;
 else if (S1==0 && S0==1)
 D <= I1;
 else if (S1==1 && S0==0)
 D <= I2;
 else
 D <= I3;
 end
endmodule

31

Top-Down Design – Combinational Behavior
Common Pitfall – Output not Assigned on Every
Pass

  Pitfall – Failing to assign every output
on every pass through the procedure
for combinational behavior
  Results in sequential behavior

  Referred to as inferred latch (more later)
  Wrong 2x4 decoder example

  Has memory
  No compiler error

  Just not a decoder

`timescale 1 ns/1 ns

module Dcd2x4(I1, I0, D3, D2, D1, D0);

 input I1, I0;
 output D3, D2, D1, D0;
 reg D3, D2, D1, D0;

 always @(I1, I0)
 begin
 if (I1==0 && I0==0)
 begin
 D3 <= 0; D2 <= 0;
 D1 <= 0; D0 <= 1;
 end
 else if (I1==0 && I0==1)
 begin
 D3 <= 0; D2 <= 0;
 D1 <= 1; D0 <= 0;
 end
 else if (I1==1 && I0==0)
 begin
 D3 <= 0; D2 <= 1;
 D1 <= 0; D0 <= 0;
 end
 else if (I1==1 && I0==1)
 begin
 D3 <= 1;
 end
 // Note: missing assignments
 // to every output in last "else if"
 end
endmodule

vldd_ch2_Dcd2x4Wrong.v

D3
D2

I0
I1

I1I0=10 D2=1,
others=0

I1I0=11 D3=1,
but D2 stays same

Missing assignments to
outputs D2, D1, D0

32

Top-Down Design – Combinational Behavior to Structure
Common Pitfall – Output not Assigned on Every Pass

  Same pitfall often occurs due to not considering all
possible input combinations

 if (I1==0 && I0==0)
 begin
 D3 <= 0; D2 <= 0;
 D1 <= 0; D0 <= 1;
 end
 else if (I1==0 && I0==1)
 begin
 D3 <= 0; D2 <= 0;
 D1 <= 1; D0 <= 0;
 end
 else if (I1==1 && I0==0)
 begin
 D3 <= 0; D2 <= 1;
 D1 <= 0; D0 <= 0;
 end

Last "else" missing, so not all
input combinations are covered

(i.e., I1I0=11 not covered)

9

33

Hierarchical Circuits
Using Modules Instances in Another Module

  Module can be used as instance in a new module
  As seen earlier: And2 module used as instance in BeltWarn module
  Can continue: BeltWarn module can be used as instance in another module

  And so on

  Hierarchy powerful mechanism for managing complexity

BeltWarn

Y
X

F

BeltWarn

WindowLock
Display

34

Hierarchical Circuits
Using Module Instances in Another Module

  4-bit 2x1 mux example

S0

D
I0
I1

N1
N2

N3

2x1 mux circuit from earlier

`timescale 1 ns/1 ns

module Mux2(I1, I0, S0, D);

 input I1, I0;
 input S0;
 output D;

 wire N1, N2, N3;

 Inv Inv_1 (S0, N1);
 And2 And2_1 (I0, N1, N2);
 And2 And2_2 (I1, S0, N3);
 Or2 Or2_1 (N2, N3, D);

endmodule

I0
S0 I1
Mux2

D

Mux2

vldd_ch2_Mux2Struct.v

35

Hierarchical Circuits
Using Module Instances in Another Module

  4-bit 2x1 mux example
Create four Mux2

instances

`timescale 1 ns/1 ns

module Mux2_4b(A3, A2, A1, A0,
 B3, B2, B1, B0,
 S0,
 C3, C2, C1, C0);

 input A3, A2, A1, A0;
 input B3, B2, B1, B0;
 input S0;
 output C3, C2, C1, C0;

 Mux2 Mux2_3 (B3, A3, S0, C3);
 Mux2 Mux2_2 (B2, A2, S0, C2);
 Mux2 Mux2_1 (B1, A1, S0, C1);
 Mux2 Mux2_0 (B0, A0, S0, C0);

endmodule

I0
S0 I1 D

I0
S0 I1 D

I0
S0 I1 D

I0
S0 I1 D

A3
B3

S0
A2
B2

A1
B1

A0
B0

s0

Mux2

Mux2

Mux2

Mux2

Mux2_4b

C3

C2

C1

C0

A3
A2
A1
A0
B3
B2
B1
B0

C3
C2
C1
C0

vldd_ch2_Mux2_4bStruct.v

Can then use
Mux2_4b in

another module’s
circuit, and so on ...

Mux2_4b

36

Built-In Gates

  We previously defined AND, OR, and
NOT gates

  Verilog has several built-in gates that
can be instantiated
  and, or, nand, nor, xor, xor

  One output, one or more inputs
  The output is always the first in the list

of port connections

  Example of 4-input AND:
 and a1 (out, in1, in2, in3, in4);

  not is another built-in gate

  Earlier BeltWarn example using built-in
gates
  Note that gate size is automatically

determined by the port connection list

`timescale 1 ns/1 ns

module BeltWarn(K, P, S, W);

 input K, P, S;
 output W;

 wire N1, N2;

 and And_1(N1, K, P);
 not Inv_1(N2, S);
 and And_2(W, N1, N2);

endmodule

vldd_ch2_BeltWarnGates.v

