

Datapath Components Magnitude Comparator	
 N-bit magnitude comparator Indicates whether A>B, A=B, or A<b, a="" and="" b<="" for="" inputs="" its="" li="" n-bit="" two=""> How to design? Consider how compare by hand. First compare a3 and b3. If equal, compare a2 and b2. And so on. Stop if comparison not equal whichever's bit is 1 is greater. If never see unequal bit pair, A=B. </b,>	A=1011 B=1001 1011 1001 Equal 1011 1001 Unequal So A > B

Datapath Components Multipliers – Array Style

• Generalized representation of multiplication by hand								
			х	a3 b3	a2 b2		a0 b0	
	+ b3a3		b2a2	b1a2 b2a1	b2a0	b1a0 0	0	
	p7 p6	p5	р4	р3	p2	p1	р0	

In-class Exercise

- Design a somewhat accurate Celsius to Fahrenheit converter.
 - The conversion circuit receives a digitized temperature in Celsius as a 16-bit binary number *C* and outputs the temperature in Fahrenheit as a 16-bit output *F* using the following approximation:
 - □ F = C*30/16 + 32.

17