
1

ECE 274 Digital Logic

Datapath Components – Multifunction
Registers

Digital Design 4.1 – 4.2

Digital Design

Chapter 4:
Datapath Components

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

3

Datapath Components
Registers

  Can store data, very common in datapaths
  Basic register of Ch 3: Loaded every cycle

  Useful for implementing FSM -- stores encoded state
  For other uses, may want to load only on certain cycles

4.2

Combinational
logic

State register
s1 s0

n1
n0

x b

clk

Basic register loads on every clock cycle

load

How extend to only load on certain cycles?

a

D
Q D

Q D
Q D

Q

I 2 I 3

Q2 Q3 Q1 Q0

I 1 I 0

clk

4-bit register

4

Datapath Components
Register with Parallel Load

  Add 2x1 mux to front of each flip-flop
  Register’s load input selects mux input to pass

  Either existing flip-flop value, or new value to load

2

5

Datapath Components
Shift Registers

  Shift right
  Move each bit one position right
  Shift in 0 to leftmost bit

  Shift Register
  Connect register’s flip-flop’s

outputs to next flip-flop’s input
  This design would always shift

on every clock cycle
  How can we control it?

1 1 0 1 Register contents
before shift right

0 1 1 0
0

Register contents
after shift right

shr_in

6

Datapath Components
Shift Registers

  What is the result after shifting 10011 four
times to the right?

1.  10011
2.  00010
3.  10000
4.  00001

7

Datapath Components
Shift Register

  To allow register to either shift or retain, use 2x1 muxes
  shr: 0 means retain, 1 shift
  shr_in: value to shift in

  May be 0, or 1

  Note: Can easily design shift register that shifts left instead

8

Datapath Components
Rotate Register

  Rotate right
  Like shift right, but leftmost bit

comes from rightmost bit

1 1 0 1

1 1 1 0

Register contents
before shift right
Register contents
after shift right

3

9

Datapath Components
Register Example: Above-Mirror Display

C
d0

d1

d2

d3
e

i0

i0

i1

i2

i3

a0

a1

load

i1

2 ⋅ 4 8

8

8

8
8 D d

8
x y
s1 s0

8-bit
4 × 1

load

load

load

load

r eg0

r eg1

r eg2

r eg3

T

A

I

M

  Instead of connecting car’s
computer to display using 32
wires, can we use fewer
wires?

  To reduce wires: Car’s
computer can write 1 value at
a time, loads into one of four
registers with display

1

0

1

0001010

1

0001010

Loaded on clock edge

10

Datapath Components
Shift Register Example: Above-Mirror Display

  Earlier example: 8
+2+1 = 11 wires from
car’s computer to
above-mirror display’s
four registers
  Better than 32 wires,

but 11 still a lot --
want fewer for
smaller wire bundles

  Use shift registers
  Wires: 1+2+1=4
  Computer sends one

value at a time, one
bit per clock cycle

c
d0

d1

d2

d3 e

i0

i0 s1 s0

x y

i1

i2

i3

a0
a1

shi f t

i1

2 ⋅ 4 8

8

8
8 D d

8

4 × 1

shr shr_in

shr shr_in

shr shr_in

shr shr_in

r eg0

r eg1

r eg2

r eg3

T

A

I

M

Note: this line is 1 bit, rather than 8 bits like before

11

Datapath Components
Multifunction Registers

  Many registers have multiple functions
  Load, shift, clear (load all 0s)
  And retain present value, of course

  Easily designed using muxes
  Just connect each mux input to achieve

desired function

Functions:
Operation
Maintain present value
Parallel load
Shift right
(unused - let's load 0s)

s0
0
1
0
1

s1
0
0
1
1

12

Datapath Components
Multifunction Registers

Operation
Maintain present value
Parallel load
Shift right
Shift left

s0
0
1
0
1

s1
0
0
1
1

4

13

Maintain value
Shift left
Shift right
Shift right
Parallel load
Parallel load
Parallel load
Parallel load

Note
Operation s0 s1

0
1
1
1
0
0
0
0

0
1
0
0
1
1
1
1

Outputs Inputs
0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

ld shr shl
Truth table for combinational circuit

Datapath Components
Multifunction Registers with Separate Control Inputs

Maintain present value
Shift left
Shift right
Shift right – shr has priority over shl
Parallel load
Parallel load – ld has priority
Parallel load – ld has priority
Parallel load – ld has priority

Operation shl shr ld
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Q2 Q1 Q0 Q3
Q2 Q1 Q0 Q3

I 2 I 1 I 0 I 3
I 2 I 1 I 0 I 3

s1 shr_in
shr_in

shr
shl

ld
s0 shl_in shl_in

a

?
c ombi-
n a tional
ci r cuit

a

s1 = ld’*shr’*shl + ld’*shr*shl’ + ld’*shr*shl

s0 = ld’*shr’*shl + ld
14

Datapath Components
Register Operation Table

  Register operations typically shown using compact version of table
  X means same operation whether value is 0 or 1

  One X expands to two rows
  Two Xs expand to four rows

  Put highest priority control input on left to make reduced table simple

Maintain value
Shift left

No t e
Operation s0 s1

0
1

0
1

Outputs Inputs

0
1

0
0

0
0

Shift right
Shift right

1
1

0
0

0
1

1
1

0
0

Parallel load
Parallel load
Parallel load
Parallel load

0
0
0
0

1
1
1
1

0
1
0
1

0
0
1
1

1
1
1
1

ld shr shl
M ai n tain v alue
Shi f t le f t

Ope r a tion ld shr shl
0
1

0
0

0
0

Parallel load X X 1
Shift right X 1 0

15

Datapath Components
Register Design Process

  Can design register with desired operations using simple
four-step process

16

Datapath Components
Register Design Example

  Desired register operations
  Synchronous clear, synchronous set, load,

shift left (with this priority)

Step 1: Determine mux size

5 operations: above, plus maintain
present value (don’t forget this one!)
--> Use 8x1 mux

Step 2: Create mux operation table

Step 3: Connect mux inputs

Step 4: Map control lines

Operation
Maintain present value
Parallel load
Shift left
Synchronous clear
Synchronous set
Maintain present value
Maintain present value
Maintain present value

s0
0
1
0
1
0
1
0
1

s1
0
0
1
1
0
0
1
1

s2
0
0
0
0
1
1
1
1

D
Q

Qn

7 6 3 2 1

In

0 5 4
1 0

s2
s1
s0

from
Qn-1

Operation
Maintain present value
Shift left
Parallel load
Set to all 1s
Clear to all 0s

s0
0
0
1
0
1

s1
0
1
0
0
1

s2
0
0
0
1
0

shl
0
1
X
X
X

ld
0
0
1
X
X

clr
0
0
0
0
1

Inputs Outputs
set
0
0
0
1
X

a

a

s2 = clr’*set
s1 = clr’*set’*ld’*shl + clr
s0 = clr’*set’*ld + clr

5

17

Datapath Components
Register Design Example

Step 4: Map control lines
Operation
Maintain present value
Shift left
Parallel load
Set to all 1s
Clear to all 0s

s0
0
0
1
0
1

s1
0
1
0
0
1

s2
0
0
0
1
0

shl
0
1
X
X
X

ld
0
0
1
X
X

clr
0
0
0
0
1

Inputs Outputs
set
0
0
0
1
X

s2 = clr’*set
s1 = clr’*set’*ld’*shl + clr
s0 = clr’*set’*ld + clr

Q2 Q1 Q0 Q3
Q2 Q1 Q0 Q3

I 2 I 1 I 0 I 3
I 2 I 1 I 0 I 3

s1
ld
shl

s0 shl_in shl_in combi-
national
circuit set

clr

s2

