
1

ECE 274 Digital Logic

Sequential Logic Design – Controllers
Digital Design 3.3

Digital Design

Chapter 3:
Sequential Logic Design -- Controllers

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

3

Sequential Logic Design
Describing Behavior of Sequential Circuit: FSM

  Finite-State Machine (FSM)
  A way to describe desired

behavior of sequential circuit
  Akin to Boolean equations for

combinational behavior
  List states, and transitions

among states
  Example: Make x change

toggle (0 to 1, or 1 to 0)
every clock cycle

  Two states: “Off” (x=0), and
“On” (x=1)

  Transition from Off to On, or
On to Off, on rising clock edge

  Arrow with no starting state
points to initial state (when
circuit first starts)

Outputs: x

On O ff
x=0 x=1

clk ̂

clk ̂

4

Sequential Logic Design
FSM Example: Three-Cycles High Laser Timer

  Three Cycle High Laser Timer
  Turn on laser for three cycles

whenever button is pressed

  FSM needs four states
  Wait in Off state while b is 0 (b’)
  When b is 1 (and rising clock

edge), transition to On1
  Sets x=1
  On next two clock edges,

transition to On2, then On3,
which also set x=1

  So x=1 for three cycles after
button pressed

On2 On1 On3

O ff

clk ̂

clk ̂

x=1 x=1 x=1

x=0

clk ̂

b ’*clk ̂

b*clk ̂

Inputs: b; Outputs: x

2

5

Sequential Logic Design
FSM Simplification: Rising Clock Edges Implicit

  Showing rising clock on every
transition: cluttered
  Make implicit -- assume every

edge has rising clock, even if not
shown

  What if we wanted a transition
without a rising edge

  We don’t consider such
asynchronous FSMs -- less
common, and advanced topic

  Only consider synchronous
FSMs -- rising edge on every
transition

Note: Transition with no associated condition thus
transistions to next state on next clock cycle

On2 On1 On3

Off

x=1 x=1 x=1

x=0
b ’

b

Inputs: b; Outputs: x

On2 On1 On3

O ff

x=1 x=1 x=1

x=0
b’

clk ̂

clk ̂

^ clk

 *clk ̂

*clk ̂ b

Inputs: b; Outputs: x

a

6

Sequential Logic Design
FSM Definition

  FSM consists of
  Set of states

  Ex: {Off, On1, On2, On3}

  Set of inputs, set of outputs
  Ex: Inputs: {x}, Outputs: {b}

  Initial state
  Ex: “Off”

  Set of transitions
  Describes next states
  Ex: Has 5 transitions

  Set of actions
  Sets outputs while in states
  Ex: x=0, x=1, x=1, and x=1

Inputs: b; Outputs: x

On2 On1 On3

Off

x=1 x=1 x=1

x=0
b ’

b

We often draw FSM graphically,
known as state diagram

Can also use table (state table), or
textual languages

7

Sequential Logic Design
FSM Example: Secure Car Key

  Many new car keys include
tiny computer chip
  When car starts, car’s

computer (under engine hood)
requests identifier from key

  Key transmits identifier
  If not, computer shuts off car

  FSM
  Wait until computer requests

ID (a=1)
  Transmit ID (in this case,

1101)

K1 K2 K3 K4
r=1 r=1 r=0 r=1

Wait
r=0

Inputs: a; Outputs: r

a ’ a

8

Sequential Logic Design
FSM Example: Secure Car Key (cont.)

  Nice feature of FSM
  Can evaluate output behavior

for different input sequence
  Timing diagrams show states

and output values for different
input waveforms

K1 K2 K3 K4
r=1 r=1 r=0 r=1

W ait
r=0

I nputs: a ; O utputs: r

a ’ a

W ait W ait K1 K2 K3 K4 W ait W ait

clk
I nputs

O utputs
S t a t e

a

r

clk
I nputs

a
K1 W ait W ait K1 K2 K3 K4 W ait

Output
State

r
a

3

9

Sequential Logic Design
FSM Example: Code Detector

  What is the state in the FSM in at the
indicated time?

clk
I nputs

a
K1 ?? ?? ?? ?? ?? ?? ?? State

K1 K2 K3 K4
r=1 r=1 r=0 r=1

W ait
r=0

I nputs: a ; O utputs: r

a ’ a

1.  K1
2.  K2
3.  K3
4.  K4

10

Sequential Logic Design
FSM Example: Code Detector

  Unlock door (u=1) only when
buttons pressed in sequence:
  start, then red, blue, green, red

  Input from each button: s, r, g,
b
  Also, output a indicates that

some colored button pressed
  FSM

  Wait for start (s=1) in “Wait”
  Once started (“Start”)

  If see red, go to “Red1”
  Then, if see blue, go to “Blue”
  Then, if see green, go to

“Green”
  Then, if see red, go to “Red2”

  In that state, open the door
(u=1)

  Wrong button at any step,
return to “Wait”, without
opening door

Start
Red

Green
Blue

s
r
g
b
a

Door
lock

u
Code

detector

a

a

a Wait

Start

Red1 R ed2 Green Blue

s ’
a ’

a r ’ a b ’ a g ’ a r ’

a ’
ab ag ar

a ’ a ’
u=0

u=0 ar

u=0 s

u=0 u=0 u=1

Inputs: s,r,g,b,a;
Outputs: u

11

Sequential Logic Design
FSM Example: Code Detector

  Can you trick this FSM to open the
door, without knowing the code?

Wait

Start

Red1 R ed2 Green Blue

s ’
a ’

a r ’ a b ’ a g ’ a r ’

a ’
ab ag ar

a ’ a ’
u=0

u=0 ar

u=0 s

u=0 u=0 u=1

Inputs: s,r,g,b,a;
Outputs: u

1.  Yes
2.  No
3.  Not sure

12

Sequential Logic Design
Improve FSM for Code Detector

  New transition conditions detect if wrong button pressed, returns to “Wait”
  FSM provides formal, concrete means to accurately define desired behavior

Note: small problem still
remains; we’ll discuss later

Wait

Start

Red1 Red2 Green Blue

s’

a ’

a ’
ab ag ar

a ’ a ’
u=0

u=0 ar

u=0 s

u=0 u=0 u=1

ar’ ab’ ag’ ar’
a

Inputs: s,r,g,b,a;
Outputs: u

4

13

Sequential Logic Design
Standard Controller Architecture

  How implement FSM as sequential
circuit?
  Use standard architecture

  State register -- to store the present
state

  Combinational logic -- to compute
outputs, and next state

  For laser timer FSM
  2-bit state register, can represent four

states
  Input b, output x

  Known as controller

a

On2 On1 On3

Off

x=1 x=1 x=1

x=0
b ’

b

Inputs: b; Outputs: x

Combinational
logic

State register
s1 s0

n1
n0

x b

clk

FSM outputs

FS
M

in

pu
ts

FS
M

ou

tp
ut

s

General version

Combinational
logic
S

m
m

N

O I

clk m-bit
state register

FS
M

ou

tp
ut

s

FS
M

in

pu
ts

