

Sequential Logic Design D Flip-Flop

- $\,\circ\,$ Solves problem of not knowing through how many latches a signal travels when C=1
 - $\hfill\square$ In figure below, signal travels through exactly one flip-flop, for Clk_A or Clk_B
 - Why? Because on rising edge of Clk, all four flip-flops are loaded simultaneously -- then all four no longer pay attention to their input, until the next rising edge. Doesn't matter how long Clk is 1.

Sequential Logic Design D Latch vs. D Flip-Flop

- Latch is level-sensitive: Stores D when C=1
- Flip-flop is edge triggered: Stores D when C changes from 0 to 1
 - Saying "level-sensitive latch," or "edge-triggered flip-flop," is redundant
 - □ Two types of flip-flops -- rising or falling edge triggered.
- Comparing behavior of latch and flip-flop:

