
1

ECE 274 Digital Logic

Introduction to Sequential Logic, Basic
Storage Element
Digital Design 3.1 – 3.2

Digital Design

Chapter 3:
Sequential Logic Design -- Controllers

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

3

Sequential Logic Design
Introduction

  Sequential circuit
  Output depends not just on present inputs (as in

combinational circuit), but on past sequence of
inputs

  Stores bits, also known as having “state”

  Simple example: a circuit that counts up in
binary

3.1

Combinational
digital circuit

1
a

b

1
F 0

1
a

b
? F 0

Must know
sequence of past
inputs to know

output

Sequential
digital circuit

4

Sequential Logic Design
Example Needing Bit Storage

  Flight attendant call button
  Press call: light turns on

  Stays on after button released

  Press cancel: light turns off
  Logic gate circuit to implement this?

Q Call
Cancel

Doesn’t work. Q=1 when Call=1, but
doesn’t stay 1 when Call returns to 0

Need some form of “feedback” in the circuit

a

a

3.2

Bit
Storage

Blue light Call
button

Cancel
button

1. Call button pressed – light turns on

Bit
Storage

Blue light Call
button

Cancel
button

2. Call button released – light stays on

Bit
Storage

Blue light Call
button

Cancel
button

3. Cancel button pressed – light turns off

2

5

Sequential Logic Design
First attempt at Bit Storage

  We need some sort of feedback
  Does circuit on the right do what we want?

  No: Once Q becomes 1 (when S=1), Q stays 1
forever – no value of S can bring Q back to 0

Q S
t

1
0

1
0

1
0 Q

t

S

0
t
1 Q S

0 0
t

1 Q S
1

1
t

1 Q S
1

1
t

0 Q S
1

a

6

0
0
1

R=1

S=0 t

Q

1
0
1
0

R

S

1
0

t

1
0

Q

Sequential Logic Design
Bit Storage Using an SR Latch

Q

S (set) SR latch

R (reset)

  Does the circuit to the right, with cross-coupled
NOR gates, do what we want?
  Yes! How did someone come up with that circuit?

Maybe just trial and error, a bit of insight...

1

0 0

1 0
1

t

Q

S=0

R=0

t

Q

S=1

R=0

0

1

1
t

Q
R=0

S=0

1

0 1
0

0
0 1
1
X 0

Recall…

a

7

Sequential Logic Design
Simple Example Using SR Latch for Bit Storage

  SR latch can serve as bit
storage in previous example
of flight-attendant call button
  Call=1 : sets Q to 1

  Q stays 1 even after Call=0

  Cancel=1 : resets Q to 0

  But, there’s a problem...
R

S

Q

C all
but t on

Blue lig h t
C an c el
but t on

Bit
S t o r age

Blue lig h t C all
but t on

C an c el
but t on

8

Sequential Logic Design
SR Latch

  What value with the output Q have at
the indicated time?

1.  1
2.  0
3.  Neither
4.  Either

R=1

S=1

Q=0

t=0

R=0

S=0

Q=??

t=??

0

1

0
1

0
1

0
1

S

R

Q

t

??

3

9

Sequential Logic Design
Problem with SR Latch

  Problem
  If S=1 and R=1 simultaneously, we don’t know what value Q will

take

Q may oscillate. Then, because one path will be
slightly longer than the other, Q will eventually
settle to 1 or 0 – but we don’t know which.

10

Sequential Logic Design
Solution: Level-Sensitive SR Latch

  Add enable input “C” as shown
  Only let S and R change when C=0

  Enure circuit in front of SR never sets SR=11,
except briefly due to path delays

  Change C to 1 only after sufficient time for S
and R to be stable

  When C becomes 1, the stable S and R value
passes through the two AND gates to the SR
latch’s S1 R1 inputs.

R1

S1 S

C

R

Level-sensitive SR latch

Q

Though SR=11 briefly...

...S1R1 never = 11

S
C Q ’

Q
R

Level-sensitive
SR latch symbol

R1

S1 S
X

Y

C
Clk

R

Level-sensitive SR latch

Q

0
1

0
1

0
1

0
1

0 S
R

C

S1
R1

1

a

11

Sequential Logic Design
Clock Signals for a Latch

  How do we know when it’s safe to set C=1?
  Most common solution –make C pulse up/down

  C=0: Safe to change X, Y
  C=1: Must not change X, Y
  We’ll see how to ensure that later

  Clock signal -- Pulsing signal used to enable
latches

  Because it ticks like a clock
  Sequential circuit whose storage components all

use clock signals: synchronous circuit
  Most common type
  Asynchronous circuits – important topic, but left for

advanced course

R1

S1 S
X

Y

C
Clk

R
Q

Level-sensitive SR latch

12

Sequential Logic Design
Clock Signal Terminology

  Clock period
  Time interval between pulses

  Above signal: period = 20 ns

  Clock cycle
  Oone such time interval

  Above signal shows 3.5 clock cycles

  Clock frequency
  1/period

  Above signal: frequency = 1 / 20 ns = 50 MHz
  1 Hz = 1/s

100 GHz
10 GHz
1 GHz

100 MHz
10 MHz

0.01 ns
0.1 ns

1 ns
10 ns

100 ns

Period Freq

4

13

Sequential Logic Design
Level-Sensitive D Latch

  SR latch requires careful design to
ensure SR=11 never occurs

  D latch relieves designer of that
burden
  Inserted inverter ensures R always

opposite of S
R

S D

C

D latch

Q

D Q ’
Q C

D latch symbol

14

Sequential Logic Design
Problem with Level-Sensitive D Latch

  D latch still has problem (as does SR latch)
  When C=1, through how many latches will a signal travel?
  Depends on for how long C=1

  Clk_A -- signal may travel through multiple latches
  Clk_B -- signal may travel through fewer latches

  Hard to pick C that is just the right length
  Can we design bit storage that only stores a value on the rising edge of

a clock signal?

Clk
rising edges

15

Sequential Logic Design
D Flip-Flop

  Flip-flop: Bit storage that stores on clock edge, not level
  One design -- master-servant

  Two latches, output of first goes to input of second, master
latch has inverted clock signal

  So master loaded when C=0, then servant when C=1
  When C changes from 0 to 1, master disabled, servant loaded

with value that was at D just before C changed -- i.e., value
at D during rising edge of C

Clk
rising edges

Note:
Hundreds of
different flip-
flop designs
exist

D latch

master

D latch

servant

D Dm Ds
Cs

Qm Q s ’
Qs Q

Q ’

C m

Clk

D flip-flop

16

Sequential Logic Design
D Flip-Flop

D Q ’
Q

Q ’ D
Q

Symbol for rising-edge
triggered D flip-flop

Symbol for falling-edge
triggered D flip-flop

Clk
rising edges

Clk
falling edges

Internal design: Just
invert servant clock
rather than master

The triangle
means clock
input, edge
triggered

5

17

Sequential Logic Design
D Latches and D Flip-Flops

  What is the final value of the output
Q given the following timing diagram?

D
D Q ’

Q

Clk

1.  1
2.  0
3.  Neither
4.  5

18

Sequential Logic Design
D Latches and D Flip-Flops

  What is the final value of the output
Q given the following timing diagram?

D
D Q ’

Q

Clk

1.  1
2.  0
3.  Neither
4.  -2

19

Sequential Logic Design
D Flip-Flop

  Solves problem of not knowing through how many latches a signal
travels when C=1
  In figure below, signal travels through exactly one flip-flop, for Clk_A or

Clk_B
  Why? Because on rising edge of Clk, all four flip-flops are loaded

simultaneously -- then all four no longer pay attention to their input, until the
next rising edge. Doesn’t matter how long Clk is 1.

Two latches inside
each flip-flop

D1 Q1 D2 Q2 D3 Q3 D4 Q4 Y

Clk

Clk_A Clk_B

20

Sequential Logic Design
D Latch vs. D Flip-Flop

  Latch is level-sensitive: Stores D when C=1
  Flip-flop is edge triggered: Stores D when C changes from 0

to 1
  Saying “level-sensitive latch,” or “edge-triggered flip-flop,” is

redundant
  Two types of flip-flops -- rising or falling edge triggered.

  Comparing behavior of latch and flip-flop:

6

21

Sequential Logic Design
Bit Storage Summary

D flip-flop
D latch

master

D latch

servant
Dm Qm
C m

Ds D

Clk

Qs’
Cs Qs

Q ’
Q

S

R

D

Q
C

D latch

Feature: Only loads D value
present at rising clock edge, so
values can’t propagate to other
flip-flops during same clock
cycle. Tradeoff: uses more
gates internally than D latch,
and requires more external
gates than SR – but gate count
is less of an issue today.

Feature: SR can’t be 11 if
D is stable before and
while C=1, and will be 11
for only a brief glitch even
if D changes while C=1.
Problem: C=1 too long
propagates new values
through too many latches:
too short may not enable a
store.

S1

R1

S

Q
C
R

Level-sensitive SR latch

Feature: S and R only
have effect when C=1.
We can design outside
circuit so SR=11 never
happens when C=1.
Problem: avoiding SR=11
can be a burden.

R (reset)

S (set)

Q

SR latch

Feature: S=1 sets
Q to 1, R=1 resets
Q to 0. Problem:
SR=11 yield
undefined Q.

22

Sequential Logic Design
Basic Register

  Typically, we store multi-bit items
  e.g., storing a 4-bit binary number

  Register: multiple flip-flops sharing clock signal
  From this point, we’ll use registers for bit storage

  No need to think of latches or flip-flops
  But now you know what’s inside a register

