ECE 274 Digital Logic - Spring 2009

Combinational Logic Design Process and Common Combinational Components Digital Design 2.7-2.10

Digital Design

Chapter 2: Combinational Logic Design

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid John Wiey and Sons Publishers, 2007
by Frank Vahid, John Wiiley and Sons Publishers, 2007.
htp://www.ddvahid.com

Copyright © 2007 Frank Vahid
7 Frank Vahid

Digital Logic - Combinational Logic

Combinational Logic Design Process Example: Three 1s Detector

Digital Logic - Combinational Logic
 Combinational Logic Design Process

Step
Description
Step 1 Capture the function
reate a truth table or equations, whichever is most natural for the given problem, to describe the desired behavior of the combinational logic.
Step 2 Convert to This step is only necessary if you captured the equations function using a truth table instead of equations Create an equation for each output by ORing all the minterms for that output. Simplify the equations if desired
Step 3 Implement For each output, create a circuit corresponding as a gatebased to the output's equation. (Sharing gates among to the output's equation. (Sharing

- Problem: Detect three consecutive 1s
in 8-bit input: abcdefgh
$00011101 \rightarrow 1 \quad 10101011 \rightarrow 0$
$11110000 \rightarrow$
- Step 1: Capture the function
- Truth table or equation?
- Truth table too big: 2^8=256 rows

Equation: create terms for each possible
case of three consecutive is
$\stackrel{y}{\mathbf{y}}=$

- Step 2: Convert to equation --
already done
\square Step 3: Implement as a gate-based circuit

Digital Logic - Combinational Logic

Combinational Logic Design Process Example: Number of 1s Count

- Problem: Output in binary on two outputs yz the number of 1 s on three inputs
$\circ 010 \rightarrow 01 \quad 101 \rightarrow 10 \quad 000 \rightarrow 00$
\square Step 1: Capture the function
- Truth table or equation?
\square Truth table is straightforward
- Step 2: Convert to equation $\circ \mathrm{y}=\mathrm{a} \mathrm{a}^{\prime} \mathrm{c}+\mathrm{ab} \mathrm{b}^{\prime} \mathrm{c}+\mathrm{abc} \mathrm{c}^{\prime}+\mathrm{abc}$ $0 \mathrm{z}=\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}+\mathrm{a}^{\prime} \mathrm{bc}^{\prime}+\mathrm{ab} \mathrm{c}^{\prime} \mathrm{c}^{\prime}+\mathrm{abc}$
\square Step 3: Implement as a gatebased circuit

Digital Logic - Combinational Logic

More Gates

- NAND: Opposite of AND ("NOT AND") •
- NOR: Opposite of OR ("NOT OR")

XOR: Exactly 1 input is 1, for 2-input XOR. (For more inputs -- odd number of 1s)

- XNOR: Opposite of XOR ("NOT XOR")

NAND same as AND with power \& ground switched

Why? nMOS conducts $0 s$ well, but not 1s (reasons beyond our scope) -- so NAND more efficient
Likewise, NOR same as OR with power/ground switched

- AND in CMOS: NAND with NOT
- OR in CMOS: NOR with NOT
- So NAND/NOR more common

Digital Logic - Combinational Logic
Completeness of NAND

- Any Boolean function can be implemented using just NAND gates. Why?
\square Need AND, OR, and NOT
- NOT: 1-input NAND (or 2-input NAND with inputs tied together)
\square AND: NAND followed by NOT
\square OR: NAND preceded by NOTs

\qquad

Digital Logic - Combinational Logic
Number of Possible Boolean Functions

- How many possible functions of 2 variables? - 2^{2} rows in truth table, 2 choices for each - $2^{\left(2^{2}\right)}=2^{4}=16$ possible functions
- N variables
- 2^{N} rows

a	b	F
0	0	0 or 12 choices
0	1	0 or 12 choices
1	0	0 or 12 choices
1	1	0 or 12 choices
		$\begin{gathered} 2^{4}=16 \\ \text { possible functions } \end{gathered}$

	b	f0	$f 1$	12	$f 3$	f4	f5	$f 6$	77	$f 8$	f9	$f 10$	$f 11$	112	$f 13$	f14	
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	
		\bigcirc						$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{O}} \\ & \underset{\sigma}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathbb{0}} \\ & \underset{\sim}{0} \end{aligned}$		\bigcirc		-		$\stackrel{\circ}{\sum_{\sim}^{2}}$	

Digital Logic - Combinational Logic
 Decoders and Muxes

- Decoder: Popular combinational
logic building block, in addition to logic gates
- Converts input binary number to one high output
- 2-input decoder: four possible input binary numbers
- So has four outputs, one for each possible input binary number
- Internal design
- AND gate for each output to detec input combination
- Decoder with enable e
- Outputs all 0 if $\mathrm{e}=0$
- Regular behavior if $\mathrm{e}=1$
- n-input decoder: 2^{n} outputs

Digital Logic - Combinational Logic

N-bit Mux

- What output of a 3×8 decoder will be asserted if $\mathrm{i} 2 \mathrm{i} 1 \mathrm{i} 0=110$?

1. $\mathrm{d} 0=1$
2. $\mathrm{d} 3=1$
3. $\mathrm{d} 6=1$
4. $\mathrm{d} 7=1$

Digital Logic - Combinational Logic
Mux Internal Design
Digital Logic - Combinational Logic
Multiplexor (Mux)

- Mux: Another popular combinational building block
- Routes one of its N data inputs to its one output, based on binary value of select inputs
$\bigcirc 4$ input mux \rightarrow needs 2 select inputs to indicate which input to route through
$\circ 8$ input mux $\rightarrow 3$ select inputs
$\circ N$ inputs $\rightarrow \log _{2}(N)$ selects
- Like a railyard switch

4×1 mux

Digital Logic - Combinational Logic
 N-bit Mux

- Example: Two 4-bit inputs, A (a3 a2 a1 a0), and B (b3 b2 b1 b0)
- 4-bit 2×1 mux (just four 2×1 muxes sharing a select line) can select between A or B

Digital Logic - Combinational Logic
N-bit Mux

- If $A=5, B=2$, what is the output of the 4 -bit 2×1 mux if $s 0=1$?

1. 0
2. 5
3. 2
4. 7

Digital Logic - Combinational Logic
Non-Ideal Gate Behavior -- Delay
Real gates have some delay
\square Outputs don't change immediately after inputs change

Four possible display items

- Temperature (T), Average miles-per-gallon (A), Instantaneous mpg (I), and Miles remaining (M) -- each is 8 -bits wide
- Choose which to display using two inputs x and y
- Use 8-bit 4x1 mux

Digital Logic - Combinational Logic N-bit Mux Example


```
Digital Logic - Combinational Logic
    Encoder: Combinational logic buildin
    block with opposite functionality of
    decode
```



```
    Outputs binary (1)
```



```
    and 2 outputs
What if two inputs are 1?
    \square Can use a priority encoder
    \square Gives priority to the highest input that
        is 1, and outputs binary encoding for
    that input
    \square Example: If d3=1 and d1=1, will output
        e0=1 and e1=1 because d3' has priority
```

```
-d1 \(\begin{aligned} & \text { en } \\ & 0\end{aligned}\)
```

-d1 $\begin{aligned} & \text { en } \\ & 0\end{aligned}$
-d2 e1-
-d2 e1-
1-d3
1-d3
Digital Logic - Combinational Logic
In Class Exercise

