ECE 274 Digital Logic - Fall 2009

Basic Logic Gates
Digital Design 2.1-2.6

Digital Logic - Combinational Logic
Introduction

Digital Logic - Combinational Logic
 Switches

- A switch has three parts
\square Source input, and output
- Current wants to flow from source input to output
- Control input
- Voltage that controls whether that current can flow
- The amazing shrinking switch
- 1930s: Relays
- 1940s: Vacuum tubes
- 1950s: Discrete transistor
- 1960s: Integrated circuits (ICs)
- Initially just a few transistors on IC
- Then tens, hundreds, thousands...

Digital Logic - Combinational Logic
Moore's Law

- IC capacity doubling about every 18 months for several decades
- Known as "Moore's Law" after Gordon Moore, co-founder of Intel
- Predicted in 1965 predicted that components per IC would double roughly every Predicted in
year or so
- Today's ICs hold billions of transistors
- The first Pentium processor (early 1990s) needed only 3 million

Digital Logic - Combinational Logic
2.4

Boolean Logic Gates - Building Blocks for Digital Circuits

- "Logic gates" are better digital circuit building blocks than switches (transistors) - Why?.

Digital Logic - Combinational Logic

Boolean Algebra and its Relation to Digitial Circuits

- To understand the benefits of "logic gates" vs. switches, we should first understand Boolean algebra
- "Traditional" algebra
\square Variable represent real numbers
Operators operate on variables, return real numbers
- Boolean Algebra
- Variables represent 0 or 1 only
\square Operators return 0 or 1 only
- Basic operators
- AND: a AND b returns 1 only when both $a=1$ and $b=1$
- OR: $\quad a \operatorname{OR} b$ returns 1 if either (or both) $a=1$ or $b=1$
- NOT: NOT a returns the opposite of $a(1 \text { if } a=0,0 \text { if } a=1)^{a}$

Digital Logic - Combinational Logic

Boolean Algebra and its Relation to Digital Circuits

- Developed mid-1800's by George Boole to formalize human thought
- Ex: "I'll go to lunch if Mary goes OR John goes, AND Sally does not go." - Let F represent my going to lunch (1 means I go, 0 I don't go)
- Likewise, m for Mary going, j for John, and s for Sally
- Then $\mathbf{F}=(\mathrm{mOR} \mathbf{j})$ AND NOT(s)
- Nice features
- Formally evaluate
$\square \mathrm{m}=1, \mathrm{j}=0, \mathrm{~s}=1$--> $\mathrm{F}=(1 \mathrm{OR} 0) \operatorname{AND} \operatorname{NOT}(1)=1$ AND $0=\underline{\mathbf{0}}$
- Formally transform
$\square \mathrm{F}=(\mathrm{m}$ and $\mathrm{NOT}(\mathrm{s})$)R ($\mathrm{and} N O T(\mathrm{~s}))$
Looks different, but same function
- We'll show transformation techniques soon

Digital Logic - Combinational Logic

Evaluating Boolean Equations

- Evaluate the Boolean equation: $F=(a$ AND b) OR (c AND d), where $a=1, b=1, c=1, d=0$. What is the value of F ?

1. 1

,

Digital Logic - Combinational Logic

Evaluating Boolean Equations

- Evaluate the Boolean equation: $\mathrm{F}=(\mathrm{a}$ AND b) OR (c AND d), where $a=1, b=1, c=1, d=1$. What is the value of F ?

1. 1

Digital Logic - Combinational Logic

Relating Boolean Algebra to Digital Design

Digital Logic - Combinational Logic
Digital Logic - Combinationa
NOT/OR/AND Logic Gate Timing Diagrams

Building Circuits Using Gates

- Motion-in-dark Detector
- Turn on lamp $(F=1)$ when motion sensed $(a=1)$ and no light $(b=0)$
$\square \mathrm{F}=\mathrm{a}$ AND NOT(b)
- Build using logic gates, AND and NOT, as shown
- We just built our first digital circuit!

Which circuit corresponds to the Boolean Equation:

F = a AND NOT(b OR NOT(c))

1. Circuit 1

2. Circuit 2

3. Circuit 3

Digital Logic - Combinational Logic

Example: Seat Belt Warning Light System

- Design circuit for warning light
- Sensors
- $\mathrm{S}=1$: seat belt fastened
- k=1: key inserted
- $p=1$: person in seat
- Capture Boolean equation
- person in seat, and seat belt not fastened, and key inserted

- Convert equation to circuit

- Notice
- Boolean algebra enables easy capture as equation and conversion to circuit

How design with switches?

- Of course, logic gates are built from

Of course, logic gates are built from switches, but we think at level of logic gates, not switches

w = p AND NOT(s) AND k

Digital Logic - Combinational Logic
 Boolean Algebra

- By defining logic gates based on Boolean algebra, we can use algebraic methods to manipulate circuits
- Start with notation: Writing a AND b, a OR b, and NOT(a) is cumbersome
- Use symbols: $a * b, a+b$, and a^{\prime} (in fact, $a * b$ can be just $a b$)

Original: $w=(p$ AND NOT(s) AND k) OR t

- New: w = ps'k + t

Spoken as "w equals p and s prime and k, or t
Or even just "w equals p s prime k, or t "

- s^{\prime} known as "complement of $s^{\prime \prime}$
- While symbols come from regular algebra, don't say "times" or "plus"

Digital Logic - Combinational Logic

Boolean Algebra Operator Precedence

```
Boolean algebra precedence, highest precedence first.
Symbol Name Description
() Parentheses Evaluate expressions nested in parentheses first
NOT Evaluate from left to right
* AND Evaluate from left to righ
O OR Evaluate from left to righ
```

Evaluate the following Boolean equations, assuming $a=1, b=1, c=0$, $\mathrm{d}=1$.

- $F=a b+c$.
- Answer: first evaluate ab using the shorthand notation for *, then OR with c, $=a b^{\prime}$.
\circ Answer: we first evaluate b^{\prime} because NOT has precedence over AND, resulting in F $=1^{*}\left(1^{\prime}\right)=1^{*}(0)=1^{*} 0=0$.
- $\mathrm{F}=(\mathrm{ac})^{\prime}$.

Answer: we first evaluate what is inside the parentheses, then we NOT the result, yielding $\left(1^{*} 0\right)^{\prime}=(0)^{\prime}=0^{\prime}=1$.

Digital Logic - Combinational Logic
 Boolean Algebra Terminology

Digital Logic - Combinational Logic

Boolean Algebra Properties

- Example equation: $\quad \mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{a} \mathrm{b} \mathrm{c}+\mathrm{abc}+\mathrm{ab}+\mathrm{c}$

- Variable

- Represents a value (0 or 1)
- Three variables: a, b, and c

- Literal

\square Appearance of a variable, in true or complemented form
\square Nine literals: $a^{\prime}, b, c, a, b, c^{\prime}, a, b$, and c

- Product term
- Product of literals
\square Four product terms: a'bc, abc', ab, c
- Sum-of-products
- Equation written as OR of product terms only
\square Above equation is in sum-of-products form. " $F=(a+b) c+d$ " is not.

Commutativ
 - $a+b=b+a$
 $\square a * b=b *$

Distributive
$a *(b+c)=a * b+a * c$

- $a+(b * c)=(a+b) *(a+c)$

> (this one is tricky!)

Associative

- $(a+b)+c=a+(b+c)$

ㅁ $(a * b) * c=a *(b * c)$

- Identity
- $0+a=a+0=a$

Complement
$\square a+a^{\prime}=1$

- a ${ }^{*} a^{\prime}=0$

To prove, just evaluate all possibilities

Example: Show $x+x^{\prime} z$ equivalent to x + Z.

- Second distributive property
\circ Replace $x+x^{\prime} z$ by $\left(x+x^{\prime}\right)^{*}(x+z)$.
\square Complement property
entity property
- replace $1^{*}(x+z)$ by $x+z$.

Digital Logic - Combinational Logic

Boolean Algebra

- Can $x x^{\prime}+x y\left(x^{\prime}+y^{\prime}\right)$ ever evaluate to 1 ?

1. Yes
2. No

Digital Logic - Combinational Logic Boolean Algebra Properties

- Null elements
$\square a+1=1$
- $a * 0=0$
- Idempotent Law
- $a+a=a$
- $a * a=a$
- Involution Law
$\square\left(a^{\prime}\right)^{\prime}=a$
- DeMorgan's Law
a $(a+b)^{\prime}=a^{\prime} b^{\prime}$
- $(a b)^{\prime}=a^{\prime}+b^{\prime}$
- Very usefu!!
- To prove, just evaluate all possibilities
- Aircraft lavatory sign example
- Three lavatories, each with sensor (a, b, c), equals 1 if door locked
Light "Available" sign (S) if any lavatory available
- Equation and circuit
- $S=a^{\prime}+b^{\prime}+c^{\prime}$
- Transform
- (abc) $=a^{\prime}+b^{\prime}+c^{\prime}$ (by DeMorgan's Law)
- $\mathrm{S}=(\mathrm{abc})^{\prime}$
- New equation and circuit - Both are equivalent

Digital Logic - Combinational Logic
Representations of Boolean Functions

- A function can be represented in different ways
- Here are seven representations of the same function using four different methods: English, Equation, Circuit, and Truth Table

Digital Logic - Combinational Logic

Truth Table Representation of Boolean Functions

- Define value of F for each possible combination of input values
- 2-input function: 4 rows
- 3-input function: 8 rows
- 4-input function: 16 rows

(b)
- Q: Use truth table to define function $F(a, b, c)$ that is 1 when abc is 5 or greater in binary

a	b	c	d	F

a	b	c	d	F
0	0	0	0	

$\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 \\ 0 & 0 & 1\end{array}$
$\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}$
$\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1\end{array}$
$\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}$
$\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0\end{array}$
$\begin{array}{llll}1 & 0 & 1 & \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1\end{array}$
$\begin{array}{llll}1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}$
(c)

Digital Logic - Combinational Logic
 Converting among Representations

- Can convert from any representation to any other
- Common conversions
- Equation to circuit (we did this earlier)
- Truth table to equation (which we can convert to circuit)
- Easy -- just OR each input term that should output 1
- Equation to truth table
- Easy -- just evaluate equation for each input combination (row)
- Creating intermediate columns helps

Digital Logic - Combinational Logic
Standard Representation: Truth Table

- How can we determine if two functions are the same?
- Is $\mathrm{f}=\mathrm{c}^{\prime}\left(\mathrm{hp}+\mathrm{h} p^{\prime}+\mathrm{h}^{\prime}\right)$ the same as $\mathrm{g}=\mathrm{hc}^{\prime}+\mathrm{h}^{\prime} \mathrm{pc}^{\prime}$?
- Use algebraic methods
- But if we failed, does that prove not equal? No.
- Solution: Convert to truth tables
- Only ONE truth table
representation of a given function
- Standard representation -- for given function, only one versio in standard form exists
- But, truth tables too big for numerous inputs
$f=c^{\prime}\left(h p+h p^{\prime}+h^{\prime}\right)$
$\mathrm{f}=\mathrm{c}^{\prime}\left(\mathrm{h}\left(\mathrm{p}+\mathrm{p}^{\prime}\right)+\mathrm{h}^{\prime}\right)$
$f=c^{\prime}\left(h+h^{\prime}\right)$
$\mathrm{f}=\mathrm{c}$ '
So...are they equal?

Q: Determine if $F=a b+a$ ' is same
function as $F=a^{\prime} b^{\prime}+a^{\prime} b+a b$, by converting

Digital Logic - Combinational Logic

Canonical Form -- Sum of Minterms

- Use standard form of equation instead

Known as canonical form - sum of minterms
Minterm: product term with every function variable appearing exactly once, in true or complemented form

- Just multiply-out equation until sum of product terms
- Then expand each term until all terms are minterms

Q: Determine if $F(a, b)=a b+a$ ' is same function as $F(a, b)=a^{\prime} b^{\prime}+a^{\prime} b+a b$, by
converting first equation to canonical form (second already in canonical
form

$F=a b+a$ (aiready sum of products)

$F=a b+a ' b+a^{\prime} b$ ' (SAME -- same three terms as other equation)

Digital Logic - Combinational Logic
Multiple-Output Circuits

- Many circuits have more than one output
- Can give each a separate circuit, or can share gates

Digital Logic - Combinational Logic
In Class Exercise
Convert the following Boolean equations to a digital circuit, sharing gates wherever possible.
$\square \mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{abc}+\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}+\mathrm{bc} c^{\prime}$
$\square \mathrm{G}(\mathrm{a}, \mathrm{b})=\mathrm{ab}+\mathrm{a}^{\prime} \mathrm{b}^{\prime}$

Digital Logic - Combinational Logic Some Circuit Drawing Conventions

