
1

ECE 274 Digital Logic

Optimization and Tradeoffs
Carry-Lookahead Adders

Digital Design 6.4

Digital Design

Chapter 6:
Optimization and Tradeoffs

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

3

Carry-Lookahead Adder
Faster Adder

  Built carry-ripple adder in Ch 4
  Similar to adding by hand, column by column
  Con: Slow

  Output is not correct until the carries have
rippled to the left

  4-bit carry-ripple adder has 4*2 = 8 gate delays
  Pro: Small

  4-bit carry-ripple adder has just 4*5 = 20 gates

F A

a3

c o s3

b3

F A

a0 b0 ci

F A

a2

s2 s1 s0

b2

F A

a1 b1

c3 ca rr ies:
b3
a3
s3

c2
b2
a2
s2

c1
b1
a1
s1

cin
b0
a0
s0

+
cout

A:
B:

a3 b3 a2 b2 a1 b1 a0 b0 cin
s3 s2 s1 s0 c out

4-bit adder

a

a

4

Carry-Lookahead Adder
Faster Adder

  Faster adder – Use two-level
combinational logic design process
  Recall that 4-bit two-level adder was big
  Pro: Fast

  2 gate delays

  Con: Large
  Truth table would have 2(4+4) =256 rows
  Plot shows 4-bit adder would use about

500 gates

  Is there a compromise design?
  Between 2 and 8 gate delays
  Between 20 and 500 gates

10000
8000
6000
4000
2000

0 1 2 3 4 5
N 6 7 8

T r ansis
t ors

a3

c o s3

b3 a0 b0 ci a2

s2 s1 s0

b2 a1 b1

Two-level: AND level
followed by ORs

2

5

F A

a3

c o s3

b3

F A

a0 b0 ci

F A

a2

s2 s1 s0

b2

F A

a1 b1

a

Carry-Lookahead Adder
Faster Adder – (Bad) Attempt at “Lookahead”

  Idea
  Modify carry-ripple adder – For a stage’s carry-in, don’t wait for

carry to ripple, but rather directly compute from inputs of earlier
stages

  Called “lookahead” because current stage “looks ahead” at previous
stages rather than waiting for carry to ripple to current stage

F A
c4

c3 c2

s3 s2
stage 3 stage 2

c1

s1
stage 1

c0

s0

c0 b0 b1 b2 b3 a0 a1 a2 a3

stage 0
c out

look
ahead look

ahead look
ahead

Notice – no rippling of carry
6

F A

a3

c o s3

b3

F A

a0 b0 c0

F A

a2

s2 s1 s0

b2

F A

a1 b1

a

Carry-Lookahead Adder
Faster Adder – (Bad) Attempt at “Lookahead”

Stage 0: Carry-in is already an
external input: c0

co0

c1

Stage 1: c1=co0
co0= b0c0 + a0c0 + a0b0

c1 = b0c0 + a0c0 + a0b0

co1

c2

Stage 2: c2=co1
co1 = b1c1 + a1c1 + a1b1

c2 = b1c1 + a1c1 + a1b1

  Recall full-adder equations:
  s = a xor b
  c = bc + ac + ab

•  Want each stage’s carry-in bit to be function of external inputs only (a’s, b’s, or c0)

c2 = b1(b0c0 + a0c0 + a0b0) + a1(b0c0 + a0c0 + a0b0) +a1b1
c2 = b1b0c0 + b1a0c0 + b1a0b0 + a1b0c0 + a1a0c0 + a1a0b0 + a1b1

F A
c4

c3 c2

s3 s2
stage 3 stage 2

c1

s1
stage 1

c0

s0

c0 b0 b1 b2 b3 a0 a1 a2 a3

stage 0

look
ahead

look
ahead

look
ahead

c out

Continue for c3

c3

co2

7

Carry-Lookahead Adder
Faster Adder – (Bad) Attempt at “Lookahead”

c1 = b0c0 + a0c0 + a0b0

  Carry lookahead logic
function of external inputs
  No waiting for ripple

  Problem
  Equations get too big
  Not efficient
  Need a better form of

lookahead

c2 = b1b0c0 + b1a0c0 + b1a0b0 + a1b0c0 + a1a0c0 + a1a0b0 + a1b1

F A
c4

c3 c2

s3 s2
stage 3 stage 2

c1

s1
stage 1

c0

s0

c0 b0 b1 b2 b3 a0 a1 a2 a3

stage 0

look
ahead look

ahead look
ahead

c out

c3 = b2b1b0c0 + b2b1a0c0 + b2b1a0b0 + b2a1b0c0 + b2a1a0c0 + b2a1a0b0 + b2a1b1 +
a2b1b0c0 + a2b1a0c0 + a2b1a0b0 + a2a1b0c0 + a2a1a0c0 + a2a1a0b0 + a2a1b1 + a2b2

8

Carry-Lookahead Adder
Better Form of Lookahead

  Have each stage compute two terms
  Propagate: P = a xor b
  Generate: G = ab

  Compute lookahead from P and G terms, not from external inputs
  Why P & G? Because the logic comes out much simpler

  Very clever finding; not particularly obvious though
  Why those names?

  G: If a and b are 1, carry-out will be 1 – “generate” a carry-out of 1 in this case
  P: If only one of a or b is 1, then carry-out will equal the carry-in – propagate the

carry-in to the carry-out in this case

(a)

b3
a3
s3

b2
a2
s2

b1
a1
s1

b0
a0
s0

1
1
0

0 1 carries: c4 c3 c2 c1 c0
B:
A: + +
c out

cin

1
1
1

1 1

+
0
1
0

1 1

+
1
0
0

1 1

+
c1

c0
b0
a0

if a0 x or b0 = 1
then c1 = 1 if c0 = 1

(call this P: Propagate)
if a0b0 = 1
then c1 = 1

(call this G:Generate)

3

9

“Bad” lookahead

F A
c4

c3 c2

s3 s2
stage 3 stage 2

c1

s1
stage 1

c0

s0

c0 b0 b1 b2 b3 a0 a1 a2 a3

stage 0

look
ahead look

ahead look
ahead

c out

Carry-Lookahead Adder
Better Form of Lookahead

  With P & G, the carry lookahead
equations are much simpler
  Equations before plugging in

  c1 = G0 + P0c0
  c2 = G1 + P1c1
  c3 = G2 + P2c2
  cout = G3 + P3c3

After plugging in:
c1 = G0 + P0c0

c2 = G1 + P1c1 = G1 + P1(G0 + P0c0)
c2 = G1 + P1G0 + P1P0c0
c3 = G2 + P2c2 = G2 + P2(G1 + P1G0 + P1P0c0)
c3 = G2 + P2G1 + P2P1G0 + P2P1P0c0
cout = G3 + P3G2 + P3P2G1 + P3P2P1G0 +
P3P2P1P0c0

Much simpler than the “bad” lookahead

a

a

C a r r y -loo k ahead lo g ic G3

a3 b3

P3 c3

c out s3

G2

a2 b2

P2 c2

s2

G1

a1 b1

P1 c1

s1

G0

a0 b0 cin

P0 c0

s0 (b)

Half-adder Half-adder Half-adder Half-adder

10

Carry-Lookahead Adder
Better Form of Lookahead

C a r r y -loo k ahead lo g ic G3

a3 b3

P3 c3

c out s3

G2

a2 b2

P2 c2

s2

G1

a1 b1

P1 c1

s1

G0

a0 b0 cin

P0 c0

s0 (b)

Half-adder Half-adder Half-adder Half-adder

c1 = G0 + P0c0
c2 = G1 + P1G0 + P1P0c0

c3 = G2 + P2G1 + P2P1G0 + P2P1P0c0
c out = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0c0

(c)

SPG
block

C
al

l t
hi

s
su

m
/p

ro
pa

ga
te

/
ge

ne
ra

te
 (S

P
G

) b
lo

ck

G3 P3 G2 P2 G1 G0 c0 P1 P0
C a r r y -loo k ahead lo g ic

S tage 4 S tage 3 S tage 2 S tage 1

a

a

11

Carry-Lookahead Adder
Carry-Lookahead Adder -- High-Level View

  Fast -- only 4 gate delays
  Each stage has SPG block with 2 gate levels
  Carry-lookahead logic quickly computes the

carry from the propagate and generate bits
using 2 gate levels inside

  Reasonable number of gates -- 4-bit adder
has only 26 gates

a3 b3
a b
P G

cout
cout

G3 P3

cin
a2 b2

a b
P G

G2 P2 c3

cin
SPG block SPG block

a1 b1
a b
P G

G1 P1 c2 c1

cin
SPG block

a0 b0 c0
a b
P G

G0 P0

cin
SPG block

4-bit carry-lookahead logic
s3 s2 s1 s0

•  4-bit adder comparison
(gate delays, gates)
–  Carry-ripple: (8, 20)
–  Two-level: (2, 500)
–  CLA: (4, 26)

o  Nice compromise

12

Carry-Lookahead Adder
Carry-Lookahead Adder – 32-bit?

  Problem: Gates get bigger in each stage
  4th stage has 5-input gates
  32nd stage would have 33-input gates

  Too many inputs for one gate
  Would require building from smaller gates,

meaning more levels (slower), more gates
(bigger)

  One solution: Connect 4-bit CLA adders in
ripple manner
  But slow (4 + 4 + 4 + 4 gate delays)

a3 a2 a1 a0 b3

s3 s2 s1 s0 c out
c out

cin
b2 b1 b0

4-bit adder
a3 a2 a1 a0 b3

s3 s2 s1 s0
s11-s8 s15-s12

a15-a12 b15-b12 a11-a8 b11-b8

c out
cin

b2 b1 b0
4-bit adder

a3 a2 a1 a0 b3

s3 s2 s1 s0 c out
s7 s6 s5 s4

cin
b2 b1 b0

a7 a6 a5 a4 b7 b6 b5 b4

4-bit adder
a3 a2 a1 a0 b3

s3 s2 s1 s0
s3 s2 s1 s0

c out
cin

b2 b1 b0
a3 a2 a1 a0 b3 b2 b1 b0

4-bit adder

4

13

Carry-Lookahead Adder
Hierarchical Carry-Lookahead Adders

  Better solution -- Rather than rippling the carries, just repeat the carry-
lookahead concept
  Requires minor modification of 4-bit CLA adder to output P and G

a3 a2 a1 a0 b3

s3 s2 s1 s0

cout

cout
cin

b2 b1 b0
4-bit adder

a3 a2 a1 a0 b3
a15-a12 b15-b12 a11-a8 b11-b8

cin
b2 b1 b0

4-bit adder

4-bit carry-lookahead logic

a3 a2 a1 a0 b3

s3 s2 s1 s0
cin

b2 b1 b0
a7 a6 a5 a4 b7 b6 b5 b4

4-bit adder
a3 a2 a1 a0 b3

s3 s2 s1 s0
cin

b2 b1 b0
a3 a2 a1 a0 b3 b2 b1 b0

4-bit adder
s3 s2 s1 s0 P G

P G
P3 G3

cout P G

P2 c3 G2

cout P G

P1 c2 G1

cout P G

P0 c1 G0

s15-s12 s11-s18 s7-s4 s3-s0

These use carry-lookahead internally

Second level of carry-lookahead

a

G3 P3 G2 P2 G1 G0 c0 P1 P0
Carry lookahead logic

Stage 4 Stage 3 Stage 2 Stage 1

Same lookahead logic as
inside the 4-bit adders

cout c3 c2 c1
14

Optimizations and Tradeoffs
Adder Tradeoffs

  Designer picks the adder that satisfies particular delay and
size requirements
  May use different adder types in different parts of same design

  Faster adders on critical path, smaller adders on non-critical path

delay

carry-select
carry-
ripple

carry-lookahead
multilevel
carry-lookahead

si
ze

