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Carry-Lookahead Adder 
Faster Adder 

  Built carry-ripple adder in Ch 4 
  Similar to adding by hand, column by column 
  Con: Slow 

  Output is not correct until the carries have 
rippled to the left 

  4-bit carry-ripple adder has 4*2 = 8 gate delays 
  Pro: Small  

  4-bit carry-ripple adder has just 4*5 = 20 gates 
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Carry-Lookahead Adder 
Faster Adder 

  Faster adder – Use two-level 
combinational logic design process 
  Recall that 4-bit two-level adder was big 
  Pro: Fast  

  2 gate delays 

  Con: Large 
  Truth table would have 2(4+4) =256 rows 
  Plot shows 4-bit adder would use about 

500 gates 

  Is there a compromise design? 
  Between 2 and 8 gate delays 
  Between 20 and 500 gates 
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Carry-Lookahead Adder 
Faster Adder – (Bad) Attempt at “Lookahead” 

  Idea 
  Modify carry-ripple adder – For a stage’s carry-in, don’t wait for 

carry to ripple, but rather directly compute from inputs of earlier 
stages 

  Called “lookahead” because current stage “looks ahead” at previous 
stages rather than waiting for carry to ripple to current stage 
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Carry-Lookahead Adder 
Faster Adder – (Bad) Attempt at “Lookahead” 

Stage 0: Carry-in is already an 
external input: c0 
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c2 = b1c1 + a1c1 + a1b1 

   Recall full-adder equations:  
  s = a xor b 
  c = bc + ac + ab 

•   Want each stage’s carry-in bit to be function of external inputs only (a’s, b’s, or c0) 

c2 = b1(b0c0 + a0c0 + a0b0) + a1(b0c0 + a0c0 + a0b0) +a1b1 
c2 = b1b0c0 + b1a0c0 + b1a0b0 + a1b0c0 + a1a0c0 + a1a0b0 + a1b1  
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Carry-Lookahead Adder 
Faster Adder – (Bad) Attempt at “Lookahead” 

c1 = b0c0 + a0c0 + a0b0  

  Carry lookahead logic 
function of external inputs 
  No waiting for ripple 

  Problem 
  Equations get too big 
  Not efficient 
  Need a better form of 

lookahead 
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Carry-Lookahead Adder 
Better Form of Lookahead 

  Have each stage compute two terms 
  Propagate: P = a xor b 
  Generate: G = ab 

  Compute lookahead from P and G terms, not from external inputs 
  Why P & G? Because the logic comes out much simpler 

  Very clever finding; not particularly obvious though 
  Why those names? 

  G: If a and b are 1, carry-out will be 1 – “generate”  a carry-out of 1 in this case 
  P: If only one of a or b is 1, then carry-out will equal the carry-in – propagate the 

carry-in to the carry-out in this case 
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“Bad” lookahead 
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Carry-Lookahead Adder 
Better Form of Lookahead 

  With P & G, the carry lookahead 
equations are much simpler 
  Equations before plugging in 

  c1 = G0 + P0c0 
  c2 = G1 + P1c1 
  c3 = G2 + P2c2 
  cout = G3 + P3c3 

After plugging in: 
c1 = G0 + P0c0 

c2 = G1 + P1c1 = G1 + P1(G0 + P0c0) 
c2 = G1 + P1G0 + P1P0c0 
c3 = G2 + P2c2 = G2 + P2(G1 + P1G0 + P1P0c0) 
c3 = G2 + P2G1 + P2P1G0 + P2P1P0c0 
cout = G3 + P3G2 + P3P2G1 + P3P2P1G0 + 
P3P2P1P0c0 

Much simpler than the “bad” lookahead 
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Carry-Lookahead Adder 
Better Form of Lookahead 
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Carry-Lookahead Adder 
Carry-Lookahead Adder -- High-Level View 

  Fast -- only 4 gate delays 
  Each stage has SPG block with 2 gate levels 
  Carry-lookahead logic quickly computes the 

carry from the propagate and generate bits 
using  2 gate levels inside 

  Reasonable number of gates -- 4-bit adder 
has only 26 gates 
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–  Carry-ripple: (8, 20) 
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Carry-Lookahead Adder 
Carry-Lookahead Adder – 32-bit? 

  Problem: Gates get bigger in each stage 
  4th stage has 5-input gates 
  32nd stage would have 33-input gates 

  Too many inputs for one gate 
  Would require building from smaller gates, 

meaning more levels (slower), more gates 
(bigger) 

  One solution: Connect 4-bit CLA adders in 
ripple manner 
  But slow (4 + 4 + 4 + 4 gate delays) 
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Carry-Lookahead Adder 
Hierarchical Carry-Lookahead Adders 

  Better solution -- Rather than rippling the carries, just repeat the carry-
lookahead concept 
  Requires minor modification of 4-bit CLA adder to output P and G 
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Optimizations and Tradeoffs 
Adder Tradeoffs 

  Designer picks the adder that satisfies particular delay and 
size requirements 
  May use different adder types in different parts of same design 

  Faster adders on critical path, smaller adders on non-critical path 
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