
1

ECE 274 Digital Logic

Optimization and Tradeoffs
Two-Level Minimization, Karnaugh Maps, Exact and

Heuristic Minimization, Multi-level Minimization
Digital Design 6.1 – 6.2

Digital Design

Chapter 6:
Optimization and Tradeoffs

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

3

Optimization and Tradeoffs
Introduction

  We now know how to build digital circuits
  How can we build better circuits?

  Let’s consider two important design criteria
  Delay – the time from inputs changing to new correct stable output
  Size – the number of transistors
  For quick estimation, assume

  Every gate has delay of “1 gate-delay”
  Every gate input requires 2 transistors
  Ignore inverters

16 transistors
2 gate-delays

F1

w x y

w x y
F1 = wxy + wxy’

(a)

4 transistors
1 gate-delay

F2

F2 = wx
(b)

w
x

= wx(y+y’) = wx

Transforming F1 to F2 represents
an optimization: Better in all

criteria of interest

(c)

20
15
10
5

F1

F2
1 2 3 4

delay (gate-delays)

si
ze

(tr

an
si

st
or

s)

4

Optimization and Tradeoffs
Introduction

  Tradeoff
  Improves some, but worsens other, criteria of interest

Transforming G1 to G2
represents a tradeoff: Some
criteria better, others worse.

14 transistors
2 gate-delays

12 transistors
3 gate-delays

G1 G2

w w
x
y
z

x

w
y
z

G1 = wx + wy + z G2 = w(x+y) + z

20
15
10
5

G1
G2

1 2 3 4
delay (gate-delays)

si
ze

(tr

an
si

st
or

s)

2

5

Optimization and Tradeoffs
Introduction

  We obviously prefer optimizations, but often must accept
tradeoffs
  You can’t build a car that is the most comfortable, and has the best

fuel efficiency, and is the fastest – you have to give up something
to gain other things.

del a y

si

del a y

z e

Optimizations
Tradeoffs

All criteria of interest
are improved (or at

least kept the same)

Some criteria of interest
are improved, while
others are worsened si

ze

si
ze

6

Optimization and Tradeoffs
Combinational Logic Optimization and Tradeoffs

  Two-level size optimization using
algebraic methods
  Goal: circuit with only two levels (ORed

AND gates), with minimum transistors
  Though transistors getting cheaper

(Moore’s Law), they still cost something

  Define problem algebraically
  Sum-of-products yields two levels

  F = abc + abc’ is sum-of-products; G =
w(xy + z) is not.

  Transform sum-of-products equation to
have fewest literals and terms

  Each literal and term translates to a gate
input, each of which translates to about
2 transistors (see Ch. 2)

  Ignore inverters for simplicity

6.2

F = xyz + xyz’ + x’y’z’ + x’y’z

F = xy(z + z’) + x’y’(z + z’)

F = xy*1 + x’y’*1

F = xy + x’y’

0

1

x’ y’
n

y’
x’

0

1

m

m

n

n
F

0

1

y
m

y
x

x

F
x
y
x’
y’

m

n

4 literals + 2
terms = 6
gate inputs

6 gate inputs =
12 transistors

Note: Assuming 4-transistor 2-input AND/OR circuits;
in reality, only NAND/NOR are so efficient.

Example

7

Optimization and Tradeoffs
Algebraic Two-Level Size Minimization

  Previous example showed common algebraic
minimization method
  (Multiply out to sum-of-products, then)
  Apply following as much possible

  ab + ab’ = a(b + b’) = a*1 = a
  “Combining terms to eliminate a variable”

  (Formally called the “Uniting theorem”)

  Duplicating a term sometimes helps
  Note that doesn’t change function

  c + d = c + d + d = c + d + d + d + d ...

  Sometimes after combining terms, can
combine resulting terms

F = xyz + xyz’ + x’y’z’ + x’y’z
F = xy(z + z’) + x’y’(z + z’)
F = xy*1 + x’y’*1
F = xy + x’y’

F = x’y’z’ + x’y’z + x’yz
F = x’y’z’ + x’y’z + x’y’z + x’yz
F = x’y’(z+z’) + x’z(y’+y)
F = x’y’ + x’z

G = xy’z’ + xy’z + xyz + xyz’
G = xy’(z’+z) + xy(z+z’)
G = xy’ + xy (now do again)
G = x(y’+y)
G = x

a

a

a

8

Optimization and Tradeoffs
Karnaugh Maps for Two-Level Size Minimization

  Easy to miss “seeing” possible opportunities to
combine terms

  Karnaugh Maps (K-maps)
  Graphical method to help us find opportunities to

combine terms
  Minterms differing in one variable are adjacent in the

map
  Can clearly see opportunities to combine terms –

look for adjacent 1s
  For F, clearly two opportunities
  Top left circle is shorthand for x’y’z’+x’y’z = x’y’(z’+z) =

x’y’(1) = x’y’
  Draw circle, write term that has all the literals except

the one that changes in the circle
  Circle xy, x=1 & y=1 in both cells of the circle, but z

changes (z=1 in one cell, 0 in the other)

  Minimized function: OR the final terms

F = x’y’z + xyz + xyz’ + x’y’z’

0 0
0 0

00 01 11 10
0
1

F yz
x

1

x ’ y ’

1 1 0 0
00 01 11 10

0 0

0

1 1 1

F yz
x

x y

x’y’z’
00 01 11 10

0
1

x’y’z x’yz x’yz’
xy’z’ xy’z xyz xyz’

F yz
x

1

Notice not in binary order

Treat left & right as adjacent too

1 1

F = x’y’ + xy

Easier than all that algebra:

F = xyz + xyz’ + x’y’z’ + x’y’z
F = xy(z + z’) + x’y’(z + z’)
F = xy*1 + x’y’*1
F = xy + x’y’

K-map

a

a

a

3

9

Optimization and Tradeoffs
Karnaugh Maps for Two-Level Size Minimization

  Four adjacent 1s means two
variables can be eliminated
  Makes intuitive sense – those two

variables appear in all
combinations, so one must be
true

  Draw one big circle – shorthand
for the algebraic transformations
above

G = xy’z’ + xy’z + xyz + xyz’
G = x(y’z’+ y’z + yz + yz’) (must be true)
G = x(y’(z’+z) + y(z+z’))
G = x(y’+y)
G = x

Draw the biggest
circle possible, or
you’ll have more terms
than really needed

10

Optimization and Tradeoffs
Karnaugh Maps for Two-Level Size Minimization

  Four adjacent cells can be in shape of a
square

  OK to cover a 1 twice
  Just like duplicating a term

  Remember, c + d = c + d + d

  No need to cover 1s more than once
  Yields extra terms – not minimized

H = x’y’z + x’yz + xy’z + xyz
 (xy appears in all combinations)

0 1 0 0
00 01 11 10

1 1
0
1 1 1

I yz
x

x

y ’ z

The two circles are shorthand for:
I = x’y’z + xy’z’ + xy’z + xyz + xyz’
I = x’y’z + xy’z + xy’z’ + xy’z + xyz + xyz’
I = (x’y’z + xy’z) + (xy’z’ + xy’z + xyz + xyz’)
I = (y’z) + (x)

a

a

a

11

Optimization and Tradeoffs
Karnaugh Maps for Two-Level Size Minimization

  Circles can cross left/right sides
  Remember, edges are adjacent

  Minterms differ in one variable only

  Circles must have 1, 2, 4, or 8
cells – 3, 5, or 7 not allowed
  3/5/7 doesn’t correspond to

algebraic transformations that
combine terms to eliminate a
variable

  Circling all the cells is OK
  Function just equals 1

12

Optimization and Tradeoffs
Karnaugh Maps for Two-Level Size Minimization

  Four-variable K-map follows same
principle
  Adjacent cells differ in one variable
  Left/right adjacent
  Top/bottom also adjacent

  5 and 6 variable maps exist
  But hard to use

  Two-variable maps exist
  But not very useful – easy to do

algebraically by hand

0 1
0
1

F z
y

G=z

F=w’xy’+yz

4

13

Optimization and Tradeoffs
Karnaugh Maps for Two-Level Size Minimization

General K-map method
1.  Convert the function’s equation into

sum-of-products form

2.  Place 1s in the appropriate K-map
cells for each term

3.  Cover all 1s by drawing the fewest
largest circles, with every 1 included
at least once; write the
corresponding term for each circle

4.  OR all the resulting terms to create
the minimized function.

Example: Minimize:
 G = a + a’b’c’ + b*(c’ + bc’)

1. Convert to sum-of-products
 G = a + a’b’c’ + bc’ + bc’

2. Place 1s in appropriate cells

0 0
00 01 11 10

0
1

G bc
a

1
bc’

1 a’b’c’
1 1 1 1

a

a

3. Cover 1s

1 0 0 1
00 01 11 10

1 1
0
1 1 1

G bc
a

a

c ’

4. OR terms: G = a + c’

14

  Minimize:
  H = a’b’(cd’ + c’d’) + ab’c’d’ + ab’cd’ +

a’bd + a’bcd’

1. Convert to sum-of-products:
  H = a’b’cd’ + a’b’c’d’ + ab’c’d’ + ab’cd’ +

a’bd + a’bcd’

2. Place 1s in K-map cells
3. Cover 1s
4. OR resulting terms

Optimization and Tradeoffs
Karnaugh Maps for Two-Level Size Minimization

1 1
00 01 11 10

00
01 1 1 1

1
11
10

0 0
0
0 0 0 0

0 0 1

H c d
ab

a

a ’ bd
a ’ bc
b ’ d ’

Funny-looking circle, but
remember that left/right
adjacent, and top/bottom
adjacent

a’b’c’d’
ab’c’d’ a’bd

a’b’cd’

ab’cd’
a’bcd’

H = b’d’ + a’bc + a’bd

15

Optimization and Tradeoffs
Karnaugh Maps: Don’t Care Input Combinations

  What if particular input combinations
can never occur?
  e.g., Minimize F = xy’z’, given that

x’y’z’ (xyz=000) can never be true, and
that xy’z (xyz=101) can never be true	

  So it doesn’t matter what F outputs
when x’y’z’ or xy’z is true, because
those cases will never occur

  Thus, make F be 1 or 0 for those
cases in a way that best minimizes the
equation

  On K-map
  Draw Xs for don’t care combinations

  Include X in circle ONLY if minimizes
equation

  Don’t include other Xs

Good use of don’t cares

Unnecessary use of don’t
cares; results in extra term

16

Optimization and Tradeoffs
Karnaugh Maps: Don’t Care Input Combinations

  Minimize:
  F = a’bc’ + abc’ + a’b’c
  Given don’t cares: a’bc, abc

  Note: Use don’t cares with caution
  Must be sure that we really don’t care

what the function outputs for that
input combination

  If we do care, even the slightest,
then it’s probably safer to set the
output to 0

00 01 11 10
0

0 0

0

1

F bc
a

’ c a b

a

1 1

1

X

X

F = a’c + b

5

17

Optimization and Tradeoffs
Karnaugh Maps: Don’t Care Input Combinations

  Example:
  Switch with 5 positions
  3-bit value gives position in

binary

  Want circuit that
  Outputs 1 when switch is in

position 2, 3, or 4
  Outputs 0 when switch is in

position 1 or 5
  Note that the 3-bit input can

never output binary 0, 6, or 7
  Treat as don’t care input

combinations

2,3,4,
detector

x
y
z

1 2 3 4 5

G

Without
don’t
cares:
F = x’y
+ xy’z’

With don’t
cares:

F = y + z’

a

a

18

Optimization and Tradeoffs
Automating Two-Level Logic Size Minimization

  Minimizing by hand
  Is hard for functions with 5 or more

variables
  May not yield minimum cover

depending on order we choose
  Is error prone

  Minimization thus typically done by
automated tools
  Exact algorithm: finds optimal

solution
  Heuristic: finds good solution, but

not necessarily optimal

1 1 1 0
00 01 11 10

1 0

0

1 1 1

I yz
x

y ’ z ’ x ’ y ’ yz

(a)

(b)
1 1 1 0
00 01 11 10

1 0

0

1 1 1

I yz
x

y ’ z ’ x ’ z

x y
4 terms

x y
Only 3 terms

a

a

19

Optimization and Tradeoffs
Basic Concepts Underlying Automated Two-Level Logic Minimization

  Definitions
  On-set: All minterms that define

when F=1
  Off-set: All minterms that define

when F=0
  Implicant: Any product term

(minterm or other) that when 1
causes F=1

  On K-map, any legal (but not
necessarily largest) circle

  Cover: Implicant xy covers
minterms xyz and xyz’

  Expanding a term: removing a
variable (like larger K-map circle)

  xyz xy is an expansion of xyz

0 1 0 0
00 01 11 10

0 0

0

1 1 1

F yz
x

x y
x yz ’
x yz

x ’ y ’ z

4 implicants of F
Note: We use K-maps here just for
intuitive illustration of concepts;
automated tools do not use K-maps.

•  Prime implicant: Maximally
expanded implicant – any
expansion would cover 1s not in
on-set
•  x’y’z, and xy, above
•  But not xyz or xyz’ – they can

be expanded

20

Optimization and Tradeoffs
Basic Concepts Underlying Automated Two-Level Logic Minimization

  Definitions (cont)
  Essential prime implicant: The

only prime implicant that covers a
particular minterm in a function’s
on-set

  Importance: We must include all
essential PIs in a function’s cover

  In contrast, some, but not all, non-
essential PIs will be included

1 1 0

0

0

00 01 11 10

1

0

1 1 1

G yz
x

not essential

not essential
y ’ z

x ’ y ’
xz x y essential

1

essential

1

6

21

Optimization and Tradeoffs
Automated Two-Level Logic Minimization Method

  Steps 1 and 2: Exact
  Step 3: Hard. Checking all possibilities: exact, but computationally

expensive. Checking some but not all: heuristic.

22

Optimization and Tradeoffs
Example of Automated Two-Level Minimization

  1. Determine all prime
implicants

  2. Add essential PIs to
cover
  Italicized 1s are thus

already covered
  Only one uncovered 1

remains

  3. Cover remaining
minterms with non-
essential PIs
  Pick among the two

possible PIs

1 1 1 0
00 01 11 10

1 0
0
1 0 1

I yz
x

y ’ z ’

x ’ z

xz ’

(c)

1 1 0
00 01 11 10

1 0
0
1 0 1

I yz
x

1 1 1 0
00 01 11 10

1 0
0
1 0 1

I yz
x

x ’ y ’ y ’ z ’

x ’ z

xz ’

(b)

x ’ y ’ y ’ z ’

x ’ z

xz ’

(a)
1

1
1

23

Optimization and Tradeoffs
Problem with Methods that Enumerate all Minterms or Compute all Prime Implicants

  Too many minterms for functions with many variables
  Function with 32 variables:

  232 = 4 billion possible minterms.
  Too much compute time/memory

  Too many computations to generate all prime implicants
  Comparing every minterm with every other minterm, for 32 variables,

is (4 billion)2 = 1 quadrillion computations
  Functions with many variables could requires days, months, years, or

more of computation – unreasonable

24

Optimization and Tradeoffs
Solution to Computation Problem

  Solution
  Don’t generate all minterms or prime implicants
  Instead, just take input equation, and try to “iteratively” improve it
  Ex: F = abcdefgh + abcdefgh’+ jklmnop

  Note: 15 variables, may have thousands of minterms
  But can minimize just by combining first two terms:

  F = abcdefg(h+h’) + jklmnop = abcdefg + jklmnop

7

25

Optimization and Tradeoffs
Two-Level Minimization using Iterative Method

  Method: Randomly apply “expand”
operations, see if helps
  Expand: remove a variable from a

term
  Like expanding circle size on K-map

  e.g., Expanding x’z to z legal, but
expanding x’z to z’ not legal, in shown
function

  After expand, remove other terms
covered by newly expanded term

  Keep trying (iterate) until doesn’t help

Ex:
 F = abcdefgh + abcdefgh’+ jklmnop
 F = abcdefg + abcdefgh’ + jklmnop
 F = abcdefg + jklmnop

0 1 1 0
00 01 11 10

0 1
0
1 1 0

I yz
x

0 1 1 0
00 01 11 10

0 1
0
1 1 0

I yz
x

xy’z

x’z

xyz

z (a)

(b)

xyz xy’z

x’z

x ’

26

Optimization and Tradeoffs
Multi-Level Logic Optimization – Performance/Size Tradeoffs

  We don’t always need the speed of two level logic
  Multiple levels may yield fewer gates
  Example

  F1 = ab + acd + ace F2 = ab + ac(d + e) = a(b + c(d + e))
  General technique: Factor out literals – xy + xz = x(y+z)

a
c
e

c a

a
b

d
4 F1

F2

F1 = ab + acd + ace
(a) F2 = a(b+c(d+e))

(b) (c)

22 transistors
2 gate delays

16 transistors
4 gate-delays

a
b
c
d
e

F1
F2

20
15
10

5
1 2 3 4

delay (gate-delays)

4
4

4
4

4

6

6
6 si

ze

(tr
an

si
st

or
s)

27

Optimization and Tradeoffs
Multi-Level Logic Optimization – Performance/Size Tradeoffs

  Use multiple levels to reduce number of transistors for
  F1 = abcd + abcef

  Solution
  F2 = abcd + abcef = abc(d + ef)
  Tradeoff: Has fewer gate inputs, thus fewer transistors a

a
b
c
e
f

b
c
a
d

F1
F2

F1 = abcd + abcef F2 = abc(d + ef)
(a) (b) (c)

22 transistors
2 gate delays

18 transistors
3 gate delays

a
b
c
d
e
f

F1
F2 20

15
10
5

1 2 3 4
delay (gate-delays)

4 6

4
4

8

10
4

si
ze

(tr

an
si

st
or

s)

28

Optimization and Tradeoffs
Multi-Level Example: Non-Critical Path

  Critical path: longest delay path to output
  Optimization: reduce size of logic on non-critical paths by using multiple

levels

