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Optimization and Tradeoffs 
Introduction 

  We now know how to build digital circuits 
  How can we build better circuits? 

  Let’s consider two important design criteria 
  Delay – the time from inputs changing to new correct stable output 
  Size – the number of transistors 
  For quick estimation, assume  

  Every gate has delay of “1 gate-delay” 
  Every gate input requires 2 transistors 
  Ignore inverters 

16 transistors 
2 gate-delays 

F1 

w x y 

w x y 
F1 = wxy + wxy’ 

(a) 

4 transistors 
1 gate-delay 

F2 

F2 = wx 
(b) 

w 
x 

= wx(y+y’)  =  wx 

Transforming F1 to F2 represents 
an optimization: Better in all 

criteria of interest 

(c) 
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Optimization and Tradeoffs 
Introduction 

  Tradeoff 
  Improves some, but worsens other, criteria of interest 

Transforming G1 to G2 
represents a tradeoff: Some 
criteria better, others worse. 

14 transistors 
2 gate-delays 

12 transistors 
3 gate-delays 

G1 G2 
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Optimization and Tradeoffs 
Introduction 

  We obviously prefer optimizations, but often must accept 
tradeoffs 
  You can’t build a car that is the most comfortable, and has the best 

fuel efficiency, and is the fastest – you have to give up something 
to gain other things.  

del a y 

si 
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Optimizations 
Tradeoffs 

All criteria of interest 
are improved (or at 

least kept the same) 

Some criteria of interest 
are improved, while 
others are worsened si
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Optimization and Tradeoffs  
Combinational Logic Optimization and Tradeoffs 

  Two-level size optimization using 
algebraic methods 
  Goal: circuit with only two levels (ORed 

AND gates), with minimum transistors 
  Though transistors getting cheaper 

(Moore’s Law), they still cost something 

  Define problem algebraically 
  Sum-of-products yields two levels 

  F = abc + abc’ is sum-of-products; G = 
w(xy + z) is not.  

  Transform sum-of-products equation to 
have fewest literals and terms 

  Each literal and term translates to a gate 
input, each of which translates to about 
2 transistors (see Ch. 2) 

  Ignore inverters for simplicity 

6.2 

F = xyz + xyz’ + x’y’z’ + x’y’z 

F = xy(z + z’) + x’y’(z + z’) 

F = xy*1 + x’y’*1 

F = xy + x’y’ 
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4 literals + 2 
terms = 6 
gate inputs 

6 gate inputs = 
12 transistors 

Note: Assuming 4-transistor 2-input AND/OR circuits; 
in reality, only NAND/NOR are so efficient. 

Example 
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Optimization and Tradeoffs  
Algebraic Two-Level Size Minimization 

  Previous example showed common algebraic 
minimization method 
  (Multiply out to sum-of-products, then) 
  Apply following as much possible 

  ab + ab’ = a(b + b’) = a*1 = a 
  “Combining terms to eliminate a variable” 

  (Formally called the “Uniting theorem”) 

  Duplicating a term sometimes helps 
  Note that doesn’t change function 

  c + d = c + d + d = c + d + d + d + d ... 

  Sometimes after combining terms, can 
combine resulting terms 

F = xyz + xyz’ + x’y’z’ + x’y’z 
F = xy(z + z’) + x’y’(z + z’) 
F = xy*1 + x’y’*1 
F = xy + x’y’ 

F = x’y’z’ + x’y’z + x’yz 
F = x’y’z’ + x’y’z + x’y’z + x’yz 
F = x’y’(z+z’) + x’z(y’+y) 
F = x’y’ + x’z 

G = xy’z’ + xy’z + xyz + xyz’ 
G = xy’(z’+z) + xy(z+z’) 
G = xy’ + xy     (now do again) 
G = x(y’+y) 
G = x 

a 

a 

a 
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Optimization and Tradeoffs  
Karnaugh Maps for Two-Level Size Minimization 

  Easy to miss “seeing” possible opportunities to 
combine terms 

  Karnaugh Maps (K-maps) 
  Graphical method to help us find opportunities to 

combine terms 
  Minterms differing in one variable are adjacent in the 

map 
  Can clearly see opportunities to combine terms – 

look for adjacent 1s 
  For F, clearly two opportunities 
  Top left circle is shorthand for x’y’z’+x’y’z = x’y’(z’+z) = 

x’y’(1) = x’y’ 
  Draw circle, write term that has all the literals except 

the one that changes in the circle 
  Circle xy, x=1 & y=1 in both cells of the circle, but z 

changes (z=1 in one cell, 0 in the other) 

  Minimized function: OR the final terms 

F = x’y’z + xyz + xyz’ + x’y’z’ 

0 0 
0 0 

00 01 11 10 
0 
1 

F yz 
x 

1 

x ’ y ’ 

1 1 0 0 
00 01 11 10 

0 0 

0 

1 1 1 

F yz 
x 

x y 

x’y’z’ 
00 01 11 10 

0 
1 

x’y’z x’yz x’yz’ 
xy’z’ xy’z xyz xyz’ 

F yz 
x 

1 

Notice not in binary order 

Treat left & right as adjacent too 

1 1 

F = x’y’ + xy 

Easier than all that algebra: 

F = xyz + xyz’ + x’y’z’ + x’y’z 
F = xy(z + z’) + x’y’(z + z’) 
F = xy*1 + x’y’*1 
F = xy + x’y’ 

K-map 

a 

a 

a 
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Optimization and Tradeoffs  
Karnaugh Maps for Two-Level Size Minimization 

  Four adjacent 1s means two 
variables can be eliminated 
  Makes intuitive sense – those two 

variables appear in all 
combinations, so one must be 
true  

  Draw one big circle – shorthand 
for the algebraic transformations 
above 

G = xy’z’ + xy’z + xyz + xyz’ 
G = x(y’z’+ y’z + yz + yz’) (must be true) 
G = x(y’(z’+z) + y(z+z’)) 
G = x(y’+y) 
G = x 

Draw the biggest 
circle possible, or 
you’ll have more terms 
than really needed 
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Optimization and Tradeoffs  
Karnaugh Maps for Two-Level Size Minimization 

  Four adjacent cells can be in shape of a 
square 

  OK to cover a 1 twice 
  Just like duplicating a term 

  Remember, c + d = c + d + d 

  No need to cover 1s more than once 
  Yields extra terms – not minimized 

H = x’y’z + x’yz + xy’z + xyz 
     (xy appears in all combinations) 

0 1 0 0 
00 01 11 10 

1 1 
0 
1 1 1 

I yz 
x 

x 

y ’ z 

The two circles are shorthand for: 
I = x’y’z + xy’z’ + xy’z + xyz + xyz’ 
I = x’y’z + xy’z + xy’z’ + xy’z + xyz + xyz’ 
I = (x’y’z + xy’z) + (xy’z’ + xy’z + xyz + xyz’) 
I = (y’z) + (x) 

a 

a 

a 
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Optimization and Tradeoffs  
Karnaugh Maps for Two-Level Size Minimization 

  Circles can cross left/right sides 
  Remember, edges are adjacent 

  Minterms differ in one variable only 

  Circles must have 1, 2, 4, or 8 
cells – 3, 5, or 7 not allowed 
  3/5/7 doesn’t correspond to 

algebraic transformations that 
combine terms to eliminate a 
variable 

  Circling all the cells is OK 
  Function just equals 1  
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Optimization and Tradeoffs  
Karnaugh Maps for Two-Level Size Minimization 

  Four-variable K-map follows same 
principle 
  Adjacent cells differ in one variable 
  Left/right adjacent 
  Top/bottom also adjacent 

  5 and 6 variable maps exist 
  But hard to use  

  Two-variable maps exist 
  But not very useful – easy to do 

algebraically by hand 

0 1 
0 
1 

F z 
y 

G=z 

F=w’xy’+yz 
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Optimization and Tradeoffs  
Karnaugh Maps for Two-Level Size Minimization 

General K-map method 
1.  Convert the function’s equation into 

sum-of-products form 

2.  Place 1s in the appropriate K-map 
cells for each term 

3.  Cover all 1s by drawing the fewest 
largest circles, with every 1 included 
at least once; write the 
corresponding term for each circle 

4.  OR all the resulting terms to create 
the minimized function. 

Example: Minimize: 
     G = a + a’b’c’ + b*(c’ + bc’) 

1. Convert to sum-of-products 
     G = a + a’b’c’ + bc’ + bc’ 

2. Place 1s in appropriate cells 

0 0 
00 01 11 10 

0 
1 

G bc 
a 

1 
bc’ 

1 a’b’c’ 
1 1 1 1 

a 

a 

3. Cover 1s 

1 0 0 1 
00 01 11 10 

1 1 
0 
1 1 1 

G bc 
a 

a 

c ’ 

4. OR terms: G = a + c’ 

14 

  Minimize: 
  H = a’b’(cd’ + c’d’) + ab’c’d’ + ab’cd’ + 

a’bd + a’bcd’ 

1. Convert to sum-of-products: 
  H = a’b’cd’ + a’b’c’d’ + ab’c’d’ + ab’cd’ + 

a’bd + a’bcd’ 

2. Place 1s in K-map cells 
3. Cover 1s 
4. OR resulting terms 

Optimization and Tradeoffs  
Karnaugh Maps for Two-Level Size Minimization 

1 1 
00 01 11 10 

00 
01 1 1 1 

1 
11 
10 

0 0 
0 
0 0 0 0 

0 0 1 

H c d 
ab 

a 

a ’ bd 
a ’ bc 
b ’ d ’ 

Funny-looking circle, but 
remember that left/right 
adjacent, and top/bottom 
adjacent 

a’b’c’d’ 
ab’c’d’ a’bd 

a’b’cd’ 

ab’cd’ 
a’bcd’ 

H = b’d’ + a’bc + a’bd 
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Optimization and Tradeoffs  
Karnaugh Maps: Don’t Care Input Combinations 

  What if particular input combinations 
can never occur? 
  e.g., Minimize F = xy’z’, given that 

x’y’z’ (xyz=000) can never be true, and 
that xy’z (xyz=101) can never be true	


  So it doesn’t matter what F outputs 
when x’y’z’ or xy’z is true, because 
those cases will never occur 

  Thus, make F be 1 or 0 for those 
cases in a way that best minimizes the 
equation 

  On K-map 
  Draw Xs for don’t care combinations 

  Include X in circle ONLY if minimizes 
equation 

  Don’t include other Xs 

Good use of don’t cares 

Unnecessary use of don’t 
cares; results in extra term 

16 

Optimization and Tradeoffs  
Karnaugh Maps: Don’t Care Input Combinations 

  Minimize: 
  F = a’bc’ + abc’ + a’b’c 
  Given don’t cares: a’bc, abc 

  Note: Use don’t cares with caution 
  Must be sure that we really don’t care 

what the function outputs for that 
input combination 

  If we do care, even the slightest, 
then it’s probably safer to set the 
output to 0 

00 01 11 10 
0 

0 0 

0 

1 

F bc 
a 

’ c a b 

a 

1 1 

1 

X 

X 

F = a’c + b 
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Optimization and Tradeoffs  
Karnaugh Maps: Don’t Care Input Combinations 

  Example: 
  Switch with 5 positions 
  3-bit value gives position in 

binary 

  Want circuit that  
  Outputs 1 when switch is in 

position 2, 3, or 4 
  Outputs 0 when switch is in 

position 1 or 5 
  Note that the 3-bit input can 

never output binary 0, 6, or 7 
  Treat as don’t care input 

combinations 

2,3,4, 
detector 

x 
y 
z 

1 2 3 4 5 

G 

Without 
don’t 
cares:  
F = x’y 
+ xy’z’ 

With don’t 
cares:  

F = y + z’ 

a 

a 
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Optimization and Tradeoffs  
Automating Two-Level Logic Size Minimization 

  Minimizing by hand  
  Is hard for functions with 5 or more 

variables 
  May not yield minimum cover 

depending on order we choose 
  Is error prone  

  Minimization thus typically done by 
automated tools 
  Exact algorithm: finds optimal 

solution 
  Heuristic: finds good solution, but 

not necessarily optimal 

1 1 1 0 
00 01 11 10 

1 0 

0 

1 1 1 

I yz 
x 

y ’ z ’ x ’ y ’ yz 

( a ) 

( b ) 
1 1 1 0 
00 01 11 10 

1 0 

0 

1 1 1 

I yz 
x 

y ’ z ’ x ’ z 

x y 
4 terms 

x y 
Only 3 terms 

a 

a 
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Optimization and Tradeoffs  
Basic Concepts Underlying Automated Two-Level Logic Minimization 

  Definitions 
  On-set: All minterms that define 

when F=1 
  Off-set: All minterms that define 

when F=0  
  Implicant: Any product term 

(minterm or other) that when 1 
causes F=1 

  On K-map, any legal (but not 
necessarily largest) circle 

  Cover: Implicant xy covers 
minterms xyz and xyz’ 

  Expanding a term: removing a 
variable  (like larger K-map circle) 

  xyz  xy is an expansion of xyz 

0 1 0 0 
00 01 11 10 

0 0 

0 

1 1 1 

F yz 
x 

x y 
x yz ’ 
x yz 

x ’ y ’ z 

4 implicants of F 
Note: We use K-maps here just for 
intuitive illustration of concepts; 
automated tools do not use K-maps. 

•  Prime implicant: Maximally 
expanded implicant – any 
expansion would cover 1s not in 
on-set 
•  x’y’z, and xy, above 
•  But not xyz or xyz’ – they can 

be expanded 
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Optimization and Tradeoffs  
Basic Concepts Underlying Automated Two-Level Logic Minimization 

  Definitions (cont) 
  Essential prime implicant: The 

only prime implicant that covers a 
particular minterm in a function’s 
on-set 

  Importance: We must include all 
essential PIs in a function’s cover 

  In contrast, some, but not all, non-
essential PIs will be included  

1 1 0 

0 

0 

00 01 11 10 

1 

0 

1 1 1 

G yz 
x 

not essential 

not essential 
y ’ z 

x ’ y ’ 
xz x y essential 

1 

essential 

1 
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Optimization and Tradeoffs  
Automated Two-Level Logic Minimization Method 

  Steps 1 and 2: Exact 
  Step 3: Hard. Checking all possibilities: exact, but computationally 

expensive. Checking some but not all: heuristic.  
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Optimization and Tradeoffs  
Example of Automated Two-Level Minimization 

  1. Determine all prime 
implicants 

  2. Add essential PIs to 
cover 
  Italicized 1s are thus 

already covered 
  Only one uncovered 1 

remains 

  3. Cover remaining 
minterms with non-
essential PIs 
  Pick among the two 

possible PIs 

1 1 1 0 
00 01 11 10 

1 0 
0 
1 0 1 

I yz 
x 

y ’ z ’ 

x ’ z 

xz ’ 

( c ) 

1 1 0 
00 01 11 10 

1 0 
0 
1 0 1 

I yz 
x 

1 1 1 0 
00 01 11 10 

1 0 
0 
1 0 1 

I yz 
x 

x ’ y ’ y ’ z ’ 

x ’ z 

xz ’ 

( b ) 

x ’ y ’ y ’ z ’ 

x ’ z 

xz ’ 

( a ) 
1 

1 
1 
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Optimization and Tradeoffs  
Problem with Methods that Enumerate all Minterms or Compute all Prime Implicants 

  Too many minterms for functions with many variables 
  Function with 32 variables: 

  232 = 4 billion possible minterms.  
  Too much compute time/memory 

  Too many computations to generate all prime implicants 
  Comparing every minterm with every other minterm, for 32 variables, 

is (4 billion)2 = 1 quadrillion computations 
  Functions with many variables could requires days, months, years, or 

more of computation – unreasonable 
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Optimization and Tradeoffs  
Solution to Computation Problem 

  Solution 
  Don’t generate all minterms or prime implicants 
  Instead, just take input equation, and try to “iteratively” improve it 
  Ex: F = abcdefgh + abcdefgh’+ jklmnop 

  Note: 15 variables, may have thousands of minterms 
  But can minimize just by combining first two terms: 

  F = abcdefg(h+h’) + jklmnop  =  abcdefg + jklmnop 
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Optimization and Tradeoffs  
Two-Level Minimization using Iterative Method 

  Method: Randomly apply “expand” 
operations, see if helps 
  Expand: remove a variable from a 

term 
  Like expanding circle size on K-map 

  e.g., Expanding x’z to z legal, but 
expanding x’z to z’ not legal, in shown 
function 

  After expand, remove other terms 
covered by newly expanded term 

  Keep trying (iterate) until doesn’t help 

Ex: 
   F = abcdefgh + abcdefgh’+ jklmnop 
   F = abcdefg + abcdefgh’ + jklmnop 
   F = abcdefg + jklmnop 

0 1 1 0 
00 01 11 10 

0 1 
0 
1 1 0 

I yz 
x 

0 1 1 0 
00 01 11 10 

0 1 
0 
1 1 0 

I yz 
x 

xy’z 

x’z 

xyz 

z (a) 

(b) 

xyz xy’z 

x’z 

x ’ 

26 

Optimization and Tradeoffs  
Multi-Level Logic Optimization – Performance/Size Tradeoffs 

  We don’t always need the speed of two level logic 
  Multiple levels may yield fewer gates 
  Example 

  F1 = ab + acd + ace        F2 = ab + ac(d + e) = a(b + c(d + e)) 
  General technique: Factor out literals – xy + xz = x(y+z) 

a 
c 
e 

c a 

a 
b 

d 
4 F1 

F2 

F1 = ab + acd + ace 
(a) F2 = a(b+c(d+e)) 

(b) (c) 

22 transistors 
2 gate delays 

16 transistors 
4 gate-delays 

a 
b 
c 
d 
e 

F1 
F2 

20 
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1 2 3 4 

delay (gate-delays) 
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Optimization and Tradeoffs  
Multi-Level Logic Optimization – Performance/Size Tradeoffs 

  Use multiple levels to reduce number of transistors for 
  F1 = abcd + abcef 

  Solution 
  F2 = abcd + abcef = abc(d + ef) 
  Tradeoff: Has fewer gate inputs, thus fewer transistors a 

a 
b 
c 
e 
f 

b 
c 
a 
d 

F1 
F2 

F1 = abcd + abcef F2 = abc(d + ef) 
(a) (b) (c) 

22 transistors 
2 gate delays 

18 transistors 
3 gate delays 

a 
b 
c 
d 
e 
f 

F1 
F2 20 

15 
10 
5 

1 2 3 4 
delay (gate-delays) 

4 6 

4 
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Optimization and Tradeoffs  
Multi-Level Example: Non-Critical Path 

  Critical path: longest delay path to output 
  Optimization: reduce size of logic on non-critical paths by using multiple 

levels 


