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RTL Design 
RTL Design Method 

5.2 
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RTL Design 
Determining Clock Frequency 

  Designers of digital circuits 
often want fastest 
performance 
  Means want high clock 

frequency 

  Frequency limited by longest 
register-to-register delay 
  Known as critical path 
  If clock is any faster, incorrect 

data may be stored into register 
  Longest path on right is 2 ns 

  Ignoring wire delays, and 
register setup and hold times, 
for simplicity 
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RTL Design 
Critical Path 

  Example shows four paths 
  a to c through +: 2 ns 
  a to d through + and *: 7 ns 
  b to d through + and *: 7 ns 
  b to d through *: 5 ns 

  Longest path is thus 7 ns 
  Fastest frequency 

  1 / 7 ns = 142 MHz 

+ * 

c d 

7 ns 7 ns 
5 ns 
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delay 

Max 
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RTL Design 
Critical Path Considering Wire Delays 

  Real wires have delay too 
  Must include in critical path 

  Example shows two paths 
  Each is 0.5 + 2 + 0.5 = 3 ns 

  Trend 
  1980s/1990s: Wire delays were tiny 

compared to logic delays 
  But wire delays not shrinking as fast as 

logic delays 
  Wire delays may even be greater than 

logic delays! 

  Must also consider register setup and 
hold times, also add to path 

  Then add some time to the computed 
path, just to be safe 
  e.g., if path is 3 ns, say 4 ns instead 
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RTL Design 
A Circuit May Have Numerous Paths 

  Paths can exist 
  In the datapath 
  In the controller 
  Between the 

controller and 
datapath 

  May be hundreds 
or thousands of 
paths 

  Timing analysis 
tools that evaluate 
all possible paths 
automatically very 
helpful 

Combinational logic 
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RTL Design 
Behavioral Level Design: C to Gates 

  Earlier sum-of-absolute-differences example 
  Started with high-level state machine 
  C code is an even better starting point -- easier to understand 
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!go S0 
go 

S1 sum = 0 
i = 0 

S3 sum=sum+abs(A[i]-B[i]) 
i=i+1 

S4 sad_ r eg = sum 

S2 
i<256 

(i<256)’ 

a 

i n t SAD (byte A[256], byte B[256]) // not quite C syntax 
{ 
     uint sum; short uint I; 
     sum = 0; 
     i = 0; 
     while (i < 256) { 
          sum = sum + abs(A[i] – B[i]); 
          i = i + 1; 
     } 

return sum; 
} 

C code 
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RTL Design 
Behavioral-Level Design: Start with C (or Similar Language) 

  Replace first step of RTL design method by two steps 
  Capture in C, then convert C to high-level state machine 
  How convert from C to high-level state machine? 

Step 1A: Capture in C 

Step 1B: Convert to high-level state machine 
a 
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RTL Design 
Converting from C to High-Level State Machine 

  Convert each C construct to 
equivalent states and 
transitions 

  Assignment statement 
  Becomes one state with 

assignment 

  If-then statement 
  Becomes state with condition 

check, transitioning to “then” 
statements if condition true, 
otherwise to ending state 

  “then” statements would also 
be converted to states 

target = expression; target= 
expression 

(then stmts) if (cond) { 
    // then stmts 
} 

!cond 
cond 

(end) 

a 

a 
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RTL Design 
Converting from C to High-Level State Machine 

  If-then-else 
  Becomes state with condition 

check, transitioning to “then” 
statements if condition true, or 
to “else” statements if condition 
false 

  While loop statement 
  Becomes state with condition 

check, transitioning to while 
loop’s statements if true, then 
transitioning back to condition 
check 

if (cond) { 
    // then stmts 
} 
else { 
   // else stmts 
} 

!cond 
cond 

(end) 

(then stmts) (else stmts) 

while (cond) { 
    // while stmts 
} 

!cond 
cond 

(while stmts) 

(end) 

a 

a 
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RTL Design 
Simple Example of Converting from C to High-Level State Machine 

  Simple example: Computing the maximum of two numbers 
  Convert if-then-else statement to states (b) 
  Then convert assignment statements to states (c) 

(end) 

(c) 

X>Y 

!(X>Y) 

(end) 

(then stmts) (else stmts) 

(b) 

X>Y 

!(X>Y) 

Max=X Max=Y 

(a) 

Inputs: uint X, Y 
Outputs: uint Max 

if (X > Y) { 

} 
else { 

} 

Max = X; 

Max = Y; 
a a 
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RTL Design 
Example: Sum-of-Absolute-Differences C 

  Convert each construct to 
states 
  Simplify when possible, 

e.g., merge states 
  From high-level state 

machine, follow RTL design 
method to create circuit 

  Thus, can convert C to 
gates using straightforward 
automatable process 
  Not all C constructs can be 

efficiently converted 
  Use C subset if intended 

for circuit 
  Can use languages other 

than C, of course 

    sum = sum + abs(A[i] - B[i]); 

(a) 

Inputs: byte A[256, B[256] 
bit go; 

Output: int sad 
main() 
{ 
   uint sum; short uint I; 
   while (1) { 

sum = 0; 
i = 0; 
while (!go); 

while (i < 256) { 
    i = i + 1; 
} 
sad = sum; } 

} 

(d) 

!go go 
sum=0 

i=0 

(g) 

!go go 
sum=0 

i=0 
!(i<256) 

i<256 

sad = 
sum 

sum=sum 
 + abs 
i = i + 1 

sum=0 

i=0 

(b) 

!(!go) 
!go 

(c) 

!go go 

(e) 

!go go 
sum=0 

i=0 

while stmts 

!(i<256) 
i<256 

sad = 
sum 

(f) 

!go go 
sum=0 

i=0 
!(i<256) 

i<256 
sum=sum 
 + abs 
i = i + 1 

a 


