
1

ECE 274 Digital Logic

RTL Design – Determining Clock Frequency
and Behavioral RTL Design: C-to-Gates

Digital Design 5.4 – 5.5

Digital Design

Chapter 5:
RTL Design

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

3

RTL Design
RTL Design Method

5.2

4

RTL Design
Determining Clock Frequency

  Designers of digital circuits
often want fastest
performance
  Means want high clock

frequency

  Frequency limited by longest
register-to-register delay
  Known as critical path
  If clock is any faster, incorrect

data may be stored into register
  Longest path on right is 2 ns

  Ignoring wire delays, and
register setup and hold times,
for simplicity

5.4

a

+

b

c

2 ns
del a y

clk

2

5

RTL Design
Critical Path

  Example shows four paths
  a to c through +: 2 ns
  a to d through + and *: 7 ns
  b to d through + and *: 7 ns
  b to d through *: 5 ns

  Longest path is thus 7 ns
  Fastest frequency

  1 / 7 ns = 142 MHz

+ *

c d

7 ns 7 ns
5 ns
delay 2 ns

delay

Max
(2,7,7,5)
= 7 ns

a b

5
ns

7
ns

7

ns

2
ns

6

RTL Design
Critical Path Considering Wire Delays

  Real wires have delay too
  Must include in critical path

  Example shows two paths
  Each is 0.5 + 2 + 0.5 = 3 ns

  Trend
  1980s/1990s: Wire delays were tiny

compared to logic delays
  But wire delays not shrinking as fast as

logic delays
  Wire delays may even be greater than

logic delays!

  Must also consider register setup and
hold times, also add to path

  Then add some time to the computed
path, just to be safe
  e.g., if path is 3 ns, say 4 ns instead

a

+

b

c

2 ns

3 ns 3
ns

0.5 ns 0.5 ns

0.5 ns

clk

3
ns

7

RTL Design
A Circuit May Have Numerous Paths

  Paths can exist
  In the datapath
  In the controller
  Between the

controller and
datapath

  May be hundreds
or thousands of
paths

  Timing analysis
tools that evaluate
all possible paths
automatically very
helpful

Combinational logic

c
tot_lt_s

clk

n1

d
tot_ld

tot_lt_s

t ot_clr

s0 s1

n0

State register

s

8 8

8

8

a

ld
clr tot

Datapath

8-bit
<

8-bit
adder

(c)

(b) (a)

8

RTL Design
Behavioral Level Design: C to Gates

  Earlier sum-of-absolute-differences example
  Started with high-level state machine
  C code is an even better starting point -- easier to understand

5.5

!go S0
go

S1 sum = 0
i = 0

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S4 sad_ r eg = sum

S2
i<256

(i<256)’

a

i n t SAD (byte A[256], byte B[256]) // not quite C syntax
{
 uint sum; short uint I;
 sum = 0;
 i = 0;
 while (i < 256) {
 sum = sum + abs(A[i] – B[i]);
 i = i + 1;
 }

return sum;
}

C code

3

9

RTL Design
Behavioral-Level Design: Start with C (or Similar Language)

  Replace first step of RTL design method by two steps
  Capture in C, then convert C to high-level state machine
  How convert from C to high-level state machine?

Step 1A: Capture in C

Step 1B: Convert to high-level state machine
a

10

RTL Design
Converting from C to High-Level State Machine

  Convert each C construct to
equivalent states and
transitions

  Assignment statement
  Becomes one state with

assignment

  If-then statement
  Becomes state with condition

check, transitioning to “then”
statements if condition true,
otherwise to ending state

  “then” statements would also
be converted to states

target = expression; target=
expression

(then stmts) if (cond) {
 // then stmts
}

!cond
cond

(end)

a

a

11

RTL Design
Converting from C to High-Level State Machine

  If-then-else
  Becomes state with condition

check, transitioning to “then”
statements if condition true, or
to “else” statements if condition
false

  While loop statement
  Becomes state with condition

check, transitioning to while
loop’s statements if true, then
transitioning back to condition
check

if (cond) {
 // then stmts
}
else {
 // else stmts
}

!cond
cond

(end)

(then stmts) (else stmts)

while (cond) {
 // while stmts
}

!cond
cond

(while stmts)

(end)

a

a

12

RTL Design
Simple Example of Converting from C to High-Level State Machine

  Simple example: Computing the maximum of two numbers
  Convert if-then-else statement to states (b)
  Then convert assignment statements to states (c)

(end)

(c)

X>Y

!(X>Y)

(end)

(then stmts) (else stmts)

(b)

X>Y

!(X>Y)

Max=X Max=Y

(a)

Inputs: uint X, Y
Outputs: uint Max

if (X > Y) {

}
else {

}

Max = X;

Max = Y;
a a

4

13

RTL Design
Example: Sum-of-Absolute-Differences C

  Convert each construct to
states
  Simplify when possible,

e.g., merge states
  From high-level state

machine, follow RTL design
method to create circuit

  Thus, can convert C to
gates using straightforward
automatable process
  Not all C constructs can be

efficiently converted
  Use C subset if intended

for circuit
  Can use languages other

than C, of course

 sum = sum + abs(A[i] - B[i]);

(a)

Inputs: byte A[256, B[256]
bit go;

Output: int sad
main()
{
 uint sum; short uint I;
 while (1) {

sum = 0;
i = 0;
while (!go);

while (i < 256) {
 i = i + 1;
}
sad = sum; }

}

(d)

!go go
sum=0

i=0

(g)

!go go
sum=0

i=0
!(i<256)

i<256

sad =
sum

sum=sum
 + abs
i = i + 1

sum=0

i=0

(b)

!(!go)
!go

(c)

!go go

(e)

!go go
sum=0

i=0

while stmts

!(i<256)
i<256

sad =
sum

(f)

!go go
sum=0

i=0
!(i<256)

i<256
sum=sum
 + abs
i = i + 1

a

