
1

ECE 274 Digital Logic

Datapath Components – Subtractors,
Two’s Complement, Overflow, ALUs,

Register Files
Digital Design 4.8 – 4.10

Digital Design

Chapter 4:
Datapath Components

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

3

Datapath Components
Subtractor

  Can build subtractor as we built carry-ripple adder
  Mimic subtraction by hand
  Compute borrows from columns on left

  Use full-subtractor component:
  wi is borrow by column on right, wo borrow from column on left

1 1 0 0
0 1 1

1
1

1 0
-

1st c olumn
1 1 0 1 0

10
0 1 1

1 0 1
1 -

3 r d c olumn
1 1 0 0

0
0 1 1

1 0 0 1
1 -

4th c olumn

w o

a3
a b

FS
wi

w o s

b3

s3

a2
a b

FS
wi

w o s

b2

s2

a1
a b

FS
wi

w o s

b1

s1

a0
a3 a2 a1 a0 b3

s3 s2 s1 s0 w o
wi

b2 b1 b0 a b
FS

wi
wi

w o s

b0

s0
(b) (c)

4-bit subtractor a

1 1 0
0 1 1

1 1
1
1 0

-

2nd c olumn
10 1 0

4

Datapath Components
Subtractor Example: Color Space Converter – RGB to CMY

  Color
  Often represented as weights of

three colors: red, green, and
blue (RGB)

  Perhaps 8 bits each, so specific
color is 24 bits

  White: R=11111111,
G=11111111, B=11111111

  Black: R=00000000,
G=00000000, B=00000000

  Other colors: values in
between, e.g., R=00111111,
G=00000000, B=00001111
would be a reddish purple

  Good for computer monitors,
which mix red, green, and blue
lights to form all colors

•  Printers use opposite color scheme
–  Because inks absorb light
–  Use complementary colors of RGB:

Cyan (absorbs red), reflects green
and blue, Magenta (absorbs green),
and Yellow (absorbs blue)

2

5

Datapath Components
Subtractor Example: Color Space Converter – RGB to CMY

  Printers must quickly convert
RGB to CMY
  C=255-R, M=255-G, Y=255-B
  Use subtractors as shown - - -

R G B
8

8 8 8
8 8

8 8 8

255 255 255

C M Y

6

Datapath Components
Subtractor Example: Color Space Converter – RGB to CMYK

  Try to save colored inks
  Expensive
  Imperfect – mixing C, M, Y doesn’t

yield good-looking black

  Solution: Factor out the black or
gray from the color, print that
part using black ink
  e.g., CMY of (250,200,200)=

(200,200,200) + (50,0,0).
  (200,200,200) is a dark gray – use

black ink

7

Datapath Components
Subtractor Example: Color Space Converter – RGB to CMYK

  Call black part K
  (200,200,200): K=200
  (Letter “B” already used for blue)

  Compute minimum of C, M,
Y values
  Use MIN component

designed earlier, using
comparator and mux, to
compute K

  Output resulting K value,
and subtract K value from
C, M, and Y values

  Ex: Input of (250,200,200)
yields output of
(50,0,0,200)

- - -

8 8
C2 M2 Y2 K

8

8

8 8 8 8

8 8

MIN

MIN
C

C M Y
R G
R GB t o CMY

B

M Y

K

R G B 8 8 8

8

Representing Negative Numbers: Two’s Complement

  Negative numbers common
  How represent in binary?

  Signed-magnitude
  Use leftmost bit for sign bit

  So -5 would be:
1101 using four bits
10000101 using eight bits

  Better way: Two’s complement
  Big advantage: Allows us to perform subtraction using addition
  Thus, only need adder component, no need for separate

subtractor component!

3

9

Datapath Components
Two’s Complement

  What is the 4-bit binary two’s complement
representation for the decimal number -5?

1.  -0101
2.  1101
3.  1010
4.  1011

10

Datapath Components
Two’s Complement

  What is the 5-bit binary two’s complement
representation for the decimal number -5?

1.  -00101
2.  10101
3.  10011
4.  11011

11

Datapath Components
Two’s Complement

  How many bits are needed to represent the
number -12 in binary?

1.  3
2.  4
3.  5
4.  Impossible!

12

Datapath Components
Two’s Complement

  What is the 5-bit binary two’s complement
representation for the decimal number 7?

1.  00111
2.  10111
3.  11001
4.  Two’s complement can only

represent negative numbers

4

13

Datapath Components
Two’s Complement

  What is the decimal equivalent the two’s
complement binary number 111?

1.  1
2.  7
3.  -1
4.  -3

14

Datapath Components
Two’s Complement

  What is the decimal equivalent the two’s
complement binary number 1000?

1.  0
2.  1
3.  8
4.  -8

15

Datapath Components
Two’s Complement

  What is the decimal equivalent the two’s
complement binary number 0101?

1.  5
2.  -5
3.  -11
4.  Nothing

16

Datapath Components
Two’s Complement

  What is the decimal equivalent the two’s
complement binary number 111111111111?

1.  1
2.  -1
3.  Who cares?
4.  I don’t know!

5

17

Datapath Components
Two’s Complement Subtractor Built with an Adder

  Using two’s complement
 A – B = A + (-B)
= A + (two’s complement of B)
= A + invert_bits(B) + 1

  So build subtractor using
adder by inverting B’s bits,
and setting carry in to 1

1
cin B A

Adder

S

B A

N-bit

18

Datapath Components
Adder/Subtractor

  Adder/subtractor: control
input determines whether
add or subtract
  Can use 2x1 mux – sub input

passes either B or inverted B
  Alternatively, can use XOR

gates – if sub input is 0, B’s
bits pass through; if sub input
is 1, XORs invert B’s bits

19

Datapath Components
Overflow

  Sometimes result can’t be represented with given number of
bits
  Either too large magnitude of positive or negative
  e.g., 4-bit two’s complement addition of 0111+0001 (7+1=8). But 4-

bit two’s complement can’t represent number >7
  0111+0001 = 1000 WRONG answer, 1000 in two’s complement is -8,

not +8

  Adder/subtractor should indicate when overflow has occurred, so
result can be discarded

20

Datapath Components
Overflow: Detecting Overflow: Method 1

  Assuming 4-bit two’s complement numbers, can detect overflow by
detecting when the two numbers’ sign bits are the same but are different
from the result’s sign bit
  If the two numbers’ sign bits are different, overflow is impossible

  Adding a positive and negative can’t exceed largest magnitude positive or negative

  Simple circuit
  overflow = a3’b3’s3 + a3b3s3’
  Include “overflow” output bit on adder/subtractor

0 1 1 1

1 0 0 0
+ 0 0 0 1

sign bits

overflow
(a)

1 1 1 1

0 1 1 1
+ 0 1 0 0

overflow
(b)

1 0 0 0

1 1 1 1
+ 1 0 1 1

no overflow
(c)

If the numbers’ sign bits have the same value, which
differs from the result’s sign bit, overflow has occurred.

6

21

Datapath Components
Overflow: Detecting Overflow: Method 2

  Even simpler method: Detect difference between carry-in to sign bit and
carry-out from sign bit

  Yields simpler circuit: overflow = c3 xor c4

0 1 1
1 1 1

1

1 0 0 1 0 0 0
+ 0 0 0 1

overflow
(a)

1 1 1
0 0 0

1

0 1 1 1
+ 0 1 0 0

overflow
(b)

1 0 0
0 0 0

0

1 1 1 1
+ 1 0 1 1

no overflow
(c)

If the carry into the sign bit column differs from the
carry out of that column, overflow has occurred.

22

Datapath Components
Magnitude Comparator Example: Minimum of Two Numbers

  Design a combinational component that computes the
minimum of two 8-bit signed numbers

23

C
d0

d1

d2

d3
e

i0

i0

i1

i2

i3

a0

a1

load

i1

2 ⋅ 4
F r

c e n t r al c
t

8

8

8

8
8 D d

8
x y
s1 s0

8-bit
4 × 1

T

o v e

mi
r r

a y

load

load

load

load

r eg0

r eg1

r eg2

r eg3

T

A

I

M

Datapath Components
Register Files

  MxN Register File
  Provides efficient access

to M N-bit-wide registers
  If we have many registers

but only need access one
or two at a time, a
register file is more
efficient

  Ex: Above-mirror display
(earlier example), but this
time having 16 32-bit
registers

  Too many wires, and big
mux is too slow

T

o v e -

mi
r r

a y

C
d0

d15
e

i0

i15 load

i3-i0

4 ⋅ 16
32

32

32

32

4

D d

s3-s0

32-bit
16 x 1

load

load

r eg0

r eg15
c ongestion

t oo much
fanout

huge mux
a

24

Datapath Components
Register Files

  Instead, want component that has one data input and one data output,
and allows us to specify which internal register to write and which to
read

32
4

32
4

W_data
W_addr
W_en

R_data
R_addr

R_en
16 × 32

register file

a

a

7

25

Datapath Components
Register Files: Timing Diagram

  Can write one
register and read
one register each
clock cycle
  May be same

register

32

2

32

2
W_data
W_addr
W_en

R_data
R_addr

R_en
4x32

register file

26

Datapath Components
Arithmetic-Logic Unit (ALU)

  ALU (A brief overview)
  Component that can

perform any of various
arithmetic (add, subtract,
increment, etc.) and logic
(AND, OR, etc.)
operations, based on
control inputs

  Motivation:
  Suppose want multi-

function calculator that
not only adds and
subtracts, but also
increments, ANDs, ORs,
XORs, etc.

27

Datapath Components
Arithmetic-Logic Unit (ALU)

  More efficient design uses ALU
  ALU design not just separate components multiplexed (same problem as previous

slide!),
  Instead, ALU design uses single adder, plus logic in front of adder’s A and B inputs

  Logic in front is called an arithmetic-logic extender
  Extender modifies the A and B inputs such that desired operation will appear at output

of the adder

28

Datapath Components
Arithmetic-Logic Extender in Front of ALU

  xyz=000: Want S=A+B – just pass a to ia, b to ib, and set cin=0
  xyz=001: Want S=A-B – pass a to ia, b’ to ib, and set cin=1
  xyz=010: Want S=A+1 – pass a to ia, set ib=0, and set cin=1
  xyz=011: Want S=A – pass a to ia, set ib=0, and set cin=0
  xyz=1000: Want S=A AND B – set ia=a*b, b=0, and cin=0
  others: likewise
  Based on above, create logic for ia(x,y,z,a,b) and ib(x,y,z,a,b) for each abext, and

create logic for cin(x,y,z), to complete design of the AL-extender component

8

29

Datapath Components (An RTL Preview!!)
Counter Example: Timer

  A type of counter used to measure time
  If we know the counter’s clock frequency and the count, we know the time

that’s been counted
  Example: Compute car’s speed using two sensors

  First sensor (a) clears and starts timer
  Second sensor (b) stops timer
  Assuming clock of 1kHz, timer output represents time to travel between

sensors. Knowing the distance, we can compute speed

