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Datapath Components 
Subtractor 

  Can build subtractor as we built carry-ripple adder 
  Mimic subtraction by hand 
  Compute borrows from columns on left 

  Use full-subtractor component:  
  wi is borrow by column on right, wo borrow from column on left 
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Datapath Components 
Subtractor Example: Color Space Converter – RGB to CMY 

  Color 
  Often represented as weights of 

three colors: red, green, and 
blue (RGB) 

  Perhaps 8 bits each, so specific 
color is 24 bits 

  White: R=11111111, 
G=11111111, B=11111111 

  Black: R=00000000, 
G=00000000, B=00000000 

  Other colors: values in 
between, e.g., R=00111111, 
G=00000000, B=00001111 
would be a reddish purple 

  Good for computer monitors, 
which mix red, green, and blue 
lights to form all colors 

•  Printers use opposite color scheme 
–  Because inks absorb light 
–  Use complementary colors of RGB: 

Cyan (absorbs red), reflects green 
and blue, Magenta (absorbs green), 
and Yellow (absorbs blue)  
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Datapath Components 
Subtractor Example: Color Space Converter – RGB to CMY 

  Printers must quickly convert 
RGB to CMY  
  C=255-R, M=255-G, Y=255-B 
  Use subtractors as shown - - - 
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Datapath Components 
Subtractor Example: Color Space Converter – RGB to CMYK 

  Try to save colored inks 
  Expensive 
  Imperfect – mixing C, M, Y doesn’t 

yield good-looking black 

  Solution: Factor out the black or 
gray from the color, print that 
part using black ink 
  e.g., CMY of (250,200,200)= 

(200,200,200) + (50,0,0). 
  (200,200,200) is a dark gray – use 

black ink 
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Datapath Components 
Subtractor Example: Color Space Converter – RGB to CMYK 

  Call black part K 
  (200,200,200): K=200 
  (Letter “B” already used for blue) 

  Compute minimum of C, M, 
Y values 
  Use MIN component 

designed earlier, using 
comparator and mux, to 
compute K 

  Output resulting K value, 
and subtract K value from 
C, M, and Y values 

  Ex: Input of (250,200,200) 
yields output of 
(50,0,0,200) 

- - - 
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Representing Negative Numbers: Two’s Complement 

  Negative numbers common 
  How represent in binary? 

  Signed-magnitude 
  Use leftmost bit for sign bit 

  So -5 would be: 
1101 using four bits 
10000101 using eight bits  

  Better way: Two’s complement 
  Big advantage: Allows us to perform subtraction using addition 
  Thus, only need adder component, no need for separate 

subtractor component! 
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Datapath Components  
Two’s Complement 

  What is the 4-bit binary two’s complement 
representation for the decimal number -5?  

1.  -0101  
2.  1101  
3.  1010 
4.  1011  
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Datapath Components  
Two’s Complement 

  What is the 5-bit binary two’s complement 
representation for the decimal number -5?  

1.  -00101  
2.  10101  
3.  10011 
4.  11011  
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Datapath Components  
Two’s Complement 

  How many bits are needed to represent the 
number -12 in binary?  

1.  3  
2.  4  
3.  5 
4.  Impossible!  
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Datapath Components  
Two’s Complement 

  What is the 5-bit binary two’s complement 
representation for the decimal number 7? 

1.  00111  
2.  10111 
3.  11001 
4.  Two’s complement can only 

represent negative numbers  
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Datapath Components  
Two’s Complement 

  What is the decimal equivalent the two’s 
complement binary number 111? 

1.  1  
2.  7 
3.  -1 
4.  -3  
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Datapath Components  
Two’s Complement 

  What is the decimal equivalent the two’s 
complement binary number 1000? 

1.  0  
2.  1 
3.  8 
4.  -8  
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Datapath Components  
Two’s Complement 

  What is the decimal equivalent the two’s 
complement binary number 0101? 

1.  5  
2.  -5 
3.  -11 
4.  Nothing  
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Datapath Components  
Two’s Complement 

  What is the decimal equivalent the two’s 
complement binary number 111111111111? 

1.  1 
2.  -1 
3.  Who cares? 
4.  I don’t know! 
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Datapath Components 
Two’s Complement Subtractor Built with an Adder 

  Using two’s complement 
   A – B = A + (-B)  
= A + (two’s complement of B)  
= A + invert_bits(B) + 1 

  So build subtractor using 
adder by inverting B’s bits, 
and setting carry in to 1 
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Datapath Components 
Adder/Subtractor 

  Adder/subtractor: control 
input determines whether 
add or subtract 
  Can use 2x1 mux – sub input 

passes either B or inverted B 
  Alternatively, can use XOR 

gates – if sub input is 0, B’s 
bits pass through; if sub input 
is 1, XORs invert B’s bits 
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Datapath Components 
Overflow 

  Sometimes result can’t be represented with given number of 
bits 
  Either too large magnitude of positive or negative 
  e.g., 4-bit two’s complement addition of 0111+0001 (7+1=8). But 4-

bit two’s complement can’t represent number >7 
  0111+0001 = 1000  WRONG answer, 1000 in two’s complement is -8, 

not +8 

  Adder/subtractor should indicate when overflow has occurred, so 
result can be discarded 
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Datapath Components 
Overflow: Detecting Overflow: Method 1 

  Assuming 4-bit two’s complement numbers, can detect overflow by 
detecting when the two numbers’ sign bits are the same but are different 
from the result’s sign bit 
  If the two numbers’ sign bits are different, overflow is impossible 

  Adding a positive and negative can’t exceed largest magnitude positive or negative 

  Simple circuit 
  overflow = a3’b3’s3 + a3b3s3’ 
  Include “overflow” output bit on adder/subtractor 
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If the numbers’ sign bits have the same value, which 
differs from the result’s sign bit, overflow has occurred. 
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Datapath Components 
Overflow: Detecting Overflow: Method 2 

  Even simpler method: Detect difference between carry-in to sign bit and 
carry-out from sign bit 

  Yields simpler circuit: overflow = c3 xor c4 
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If the carry into the sign bit column differs from the 
carry out of that column, overflow has occurred. 
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Datapath Components 
Magnitude Comparator Example: Minimum of Two Numbers 

  Design a combinational component that computes the 
minimum of two 8-bit signed numbers 
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Datapath Components  
Register Files 

  MxN Register File  
  Provides efficient access 

to M N-bit-wide registers 
  If we have many registers 

but only need access one 
or two at a time, a 
register file is more 
efficient 

  Ex: Above-mirror display 
(earlier example), but this 
time having 16 32-bit 
registers    

  Too many wires, and big 
mux is too slow 
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Datapath Components  
Register Files 

  Instead, want component that has one data input and one data output, 
and allows us to specify which internal register to write and which to 
read 
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Datapath Components  
Register Files: Timing Diagram 

  Can write one 
register and read 
one register each 
clock cycle 
  May be same 
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Datapath Components 
Arithmetic-Logic Unit (ALU) 

  ALU (A brief overview) 
  Component that can 

perform any of various 
arithmetic (add, subtract, 
increment, etc.) and logic 
(AND, OR, etc.) 
operations, based on 
control inputs  

  Motivation: 
  Suppose want multi-

function calculator that 
not only adds and 
subtracts, but also 
increments, ANDs, ORs, 
XORs, etc. 
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Datapath Components 
Arithmetic-Logic Unit (ALU) 

  More efficient design uses ALU 
  ALU design not just separate components multiplexed (same problem as previous 

slide!),  
  Instead, ALU design uses single adder, plus logic in front of adder’s A and B inputs 

  Logic in front is called an arithmetic-logic extender 
  Extender modifies the A and B inputs such that desired operation will appear at output 

of the adder  
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Datapath Components  
Arithmetic-Logic Extender in Front of ALU 

  xyz=000: Want S=A+B – just pass a to ia, b to ib, and set cin=0 
  xyz=001: Want S=A-B – pass a to ia, b’ to ib, and set cin=1 
  xyz=010: Want S=A+1 – pass a to ia, set ib=0, and set cin=1 
  xyz=011: Want S=A – pass a to ia, set ib=0, and set cin=0 
  xyz=1000: Want S=A AND B – set ia=a*b, b=0, and cin=0 
  others: likewise 
  Based on above, create logic for ia(x,y,z,a,b) and ib(x,y,z,a,b) for each abext, and 

create logic for cin(x,y,z), to complete design of the AL-extender component 
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Datapath Components (An RTL Preview!!) 
Counter Example: Timer  

  A type of counter used to measure time 
  If we know the counter’s clock frequency and the count, we know the time 

that’s been counted 
  Example: Compute car’s speed using two sensors 

  First sensor (a) clears and starts timer 
  Second sensor (b) stops timer 
  Assuming clock of 1kHz, timer output represents time to travel between 

sensors. Knowing the distance, we can compute speed 


