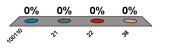


Digital Logic — Introduction How to Encode Numbers: Binary Numbers

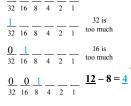
- Working with binary numbers
 - □ In base ten, helps to know powers
 - o one, ten, hundred, thousand, ten thousand, ...
 - ☐ In base two, helps to know powers
 - o one, two, four, eight, sixteen, thirty two, sixty four, one hundred twenty eight
 - (Note: unlike base ten, we don't have common names, like "thousand," for each position in base ten -- so we use the base ten name)



512 256 128 64 32 16 8 4 2 1

Digital Logic – Introduction Converting from Decimal to Binary

- What is the value of the binary number 100110 in decimal?
 - 1. 100,110
 - 2. 21
 - **3**. 22
 - 38

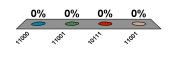


10

Digital Logic – Introduction Converting from Decimal to Binary Numbers

- Subtraction Method (Easy for Humans)
 - □ *Goal:* Get the binary weights to add up to the decimal quantity
 - Work from left to right
 - □ (Right to left may fill in 1s that shouldn't have been there - try it). Subtraction method
 - Subtract a selected binary weight from the (remaining) quantity
 - Then, we have a new remaining quantity, and we start again (from the present binary position)
 - Stop when remaining quantity is 0

Remaining quantity: 12



 $\underline{\mathbf{0}} \ \underline{\mathbf{0}} \ \underline{\mathbf{1}} \ \underline{\mathbf{1}} \ \underline{\mathbf{0}} \ \underline{\mathbf{0}} \quad \text{answer}$ 32 16 8 4 2 1

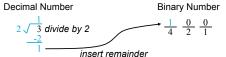
Digital Logic — Introduction Converting from Decimal to Binary

- What is the value of the decimal number 25 in binary?
 - 1. 11000
 - 2. 11001
 - **3.** 10111
 - 4. 011001

- Division Method (Good for Computers)
 - □ Divide decimal number by 2 and insert remainder into new binary number.
 - □ Continue dividing quotient by 2 until the quotient is 0.
- o Example: Convert decimal number 12 to binary

Decimal Number Binary Number 12 divide by 2 insert remainder

Continue dividing since quotient (6) is greater than 0


6 divide by 2 insert remainder

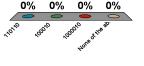
Continue dividing since quotient (3) is greater than 0

13

Digital Logic – Introduction Converting from Decimal to Binary

Example: Convert decimal number 12 to binary (continued)

Continue dividing since quotient (1) is greater than 0



Since quotient is 0, we can conclude that 12 is 1100 in binary

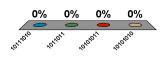
14

Digital Logic — Introduction Converting from Decimal to Binary

- What is the value of the decimal number 54 in binary?
 - 1. 110110
 - 2. 100010
 - 3. 1000010
 - 4. None of the above

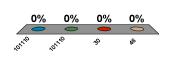
Digital Logic – Introduction Hexadecimal Numbers

hex	binary	hex	binary
0	0000	8	1000
1	0001	9	1001
2	0010	Α	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	Е	1110
7	0111	F	1111


- Nice because each position represents four base two positions
 - Used as compact means to write binary
- Known as hexadecimal, or just hex

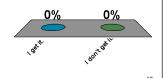
Convert 11110000 to hex:

- What is the value of the hexadecimal number AB in binary?
 - 1. 10111010
 - 2. 01011011
 - **3**. 10101011
 - 4. 10101010


hex	binary	hex	binary
0	0000	8	1000
1	0001	9	1001
2	0010	Α	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Digital Logic – Introduction Converting from Hexadecimal to Decimal

- What is the value of the hexadecimal number 2E in decimal?
 - 1. 101110
 - 2. 00101110
 - **3**. 30
 - 4. 46


hex	binary	hex	binary
0	0000	8	1000
1	0001	9	1001
2	0010	Α	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

18

Digital Logic – Introduction An attempt at humor

- There are 10 types of people in the world: Those who get binary and those who don't. Which type are you?
 - 1. I get it.
 - 2. I don't get it.

