ECE 274 Digital Logic - Fall 2009

MWF 12-12:50PM, ILC 150
Roman Lysecky, rlysecky@ece.arizona.edu
http://www.ece.arizona.edu/~ece274

Digital Logic - Introduction
Why Study Digital Design?

- Look "under the hood" of computers
- Solid understanding --> confidence, insight, even better programmer when aware of hardware resource issues
Electronic devices becoming digital
- Enabled by shrinking and more capable chips
- Enables:
- Better devices: Better sound recorders, cameras, cars, cell phones, medical devices,...
- New devices: Video games, PDAs, ...
- Known as "embedded systems"
- Thousands of new devices every year
- Designers needed: Potential career direction

ARIZONA tucson Arzona


Digital Logic - Introduction
What Does "Digital" Mean?

## - Analog signal

$\square$ Infinite possible values


Ex: voltage on a wire created by microphone
$>\begin{aligned} & \text { move the } \\ & \text { membrane }\end{aligned}$
Mhidm moves
themanenet, $\longrightarrow$ analog
$\xrightarrow[\text { Murentiin theeates seaby wire }]{\text { anal }}$ Possible values:


- Digital signal
$\square$ Finite possible values
- Ex: button pressed on a keypad




## Digital Logic - Introduction <br> Binary - Digital Signals with Only Two Values

## - Binary digital signal -- only two possible values

- Typically represented as $\mathbf{0}$ and $\mathbf{1}$
$\square$ One binary digit is a bit
- We'll only consider binary digital signals
- Binary is popular because
- Transistors, the basic digital electric component, operate using two voltages
- Storing/transmitting one of two values is
easier than three or more (e.g., loud beep or quiet beep, reflection or no reflection)

Digital Logic - Introduction
How Do We Encode Data as Binary for Our Digital System?
phenomena
phenomena
sensors and
sensors and
sensors and
sensors and
electric
signal
electric
signal

Some inputs inherently binary putton: not pressed (0)

- Just need encoding in binary encode red=001 blue=010, ...
Some inputs analog
$\square$ Need analog-to-digital
As done in earlier slide -sample and encode with bits



## Digital Logic - Introduction

How to Encode Numbers: Binary Numbers

- Each position represents a quantity; symbol in position means how many of that


## quantity

$\square$ Base ten (decima)

- Ten symbols: $0,1,2, \ldots, 8$, and 9
- More than 9 -- next position
- So each position power of 10
- Nothing special about base 10 -used because we have 10 fingers
- Base two (binary)
- Two symbols: 0 and 1
- More than 1 -- next position
$\square$ So each position power of 2


## Digital Logic - Introduction

Example of Digitization




```
Digital Logic - Introduction
How to Encode Numbers: Binary Numbers
```

```
O Working with binary numbers
    \square In base ten, helps to know powers
    of 10
\[
\overline{10^{3}} \overline{10^{2}} \overline{10^{1}} \overline{10^{0}}
\]
\[
-\frac{10}{10}
\]
1000100101
```

        - one, ten, hundred, thousand, ten
        thousand, ...
    - In base two, helps to know powers
        of 2
        - one, two, four, eight, sixteen,
        thirty two, sixty four, one hundred
        twenty eight
            - (Note: unlike base ten, we don't
            have common names, like
            "thousand," for each position in
            base ten -- so we use the base
            ten name)
    
## Digital Logic - Introduction

Converting from Decimal to Binary Numbers

## - Subtraction Method (Easy for

Humans)
Remaining quantity: 12
$\square$ Goal: Get the binary weights to add up to the decimal quantity

- Work from left to right
- (Right to left - may fill in 1s that shouldn't have been there - try it). Subtraction method
- Subtract a selected binary weight from the (remaining) quantity - Then, we have a new remaining quantity, and we start again (from the present binary position)
- Stop when remaining quantity is 0

| 32 | 16 | 8 | 4 | 2 | 1 | $\begin{aligned} & 32 \text { is } \\ & \text { too much } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |
| 32 | 16 | 8 | 4 | 2 | 1 |  |
| 0 |  |  |  |  |  | $16 \text { is }$too much |
| 32 | 16 | 8 | 4 | 2 | 1 |  |
| $\underline{0}$ | 0 |  |  |  |  | $\underline{12}-8=\underline{4}$ |
| 32 | 16 | 8 | 4 | 2 | 1 |  |
| 0 | $\underline{0}$ | 1 | 1 |  |  | $\frac{\mathbf{4 - 4}=0}{\text { DONE }}$ |
| 32 | 16 | 8 | 4 | 2 | 1 |  |
|  |  | 1 | 1 | 0 | 0 | ans |

$\overline{2^{9}} \overline{2^{8}} \overline{2^{7}} \overline{2^{6}} \overline{2^{5}} \overline{2^{4}} \overline{2^{3}} \overline{2^{2}} \overline{2^{1}} \overline{2^{0}}$

$\begin{array}{lllllll}512 & 256 & 128 & 64 & 32 & 16 & 8 \\ 4 & 2\end{array}$

## Digital Logic - Introduction

Converting from Decimal to Binary

- What is the value of the binary number 100110 in decimal?

1. 100,110
2. 21
3. 22
4. 38


## Digital Logic - Introduction

Converting from Decimal to Binary

- What is the value of the decimal number 25 in binary?

1. 11000
2. 11001
3. 10111
4. 011001


## Digital Logic - Introduction

Converting from Decimal to Binary

- Division Method (Good for Computers)
- Divide decimal number by 2 and insert remainder into new binary number.
- Continue dividing quotient by 2 until the quotient is 0 .
- Example: Convert decimal number 12 to binary


Continue dividing since quotient (3) is greater than 0

## Digital Logic - Introduction

Converting from Decimal to Binary

- Example: Convert decimal number 12 to binary (continued)


Continue dividing since quotient (1) is greater than 0


Since quotient is 0 , we can conclude that 12 is 1100 in binary

## Digital Logic - Introduction

Hexadecimal Numbers

- What is the value of the decimal number 54 in binary?

1. 110110
2. 100010
3. 1000010
4. None of the above


- Nice because each position represents four base two positions
- Used as compact means to write binary numbers

| hex | binary | hex | binary |
| :---: | :---: | :---: | :---: |
| 0 | 0000 | 8 | 1000 |
| 1 | 0001 | 9 | 1001 |
| 2 | 0010 | A | 1010 |
| 3 | 0011 | в | 1011 |
| 4 | 0100 | c | 1100 |
| 5 | 0101 | D | 1101 |
| 6 | 0110 | E | 1110 |
| 7 | 0111 | F | 1111 |

- Known as hexadecimal, or just hex

Convert 11110000 to hex:


## Digital Logic - Introduction

Digital Logic - Introduction
Converting from Hexadecimal to Decimal

- What is the value of the hexadecimal number $A B$ in binary?

1. 10111010
2. 01011011
3. 10101011
4. 10101010

- What is the value of the hexadecimal number 2 E in decimal?

1. 101110
2. 00101110
3. 30
4. 46

| hex | binary | hex | binary |
| :---: | :---: | :---: | :---: |
| 0 | 0000 | 8 | 1000 |
| 1 | 0001 | 9 | 1001 |
| 2 | 0010 | A | 1010 |
| 3 | 0011 | в | 1011 |
| 4 | 0100 | c | 1100 |
| 5 | 0101 | D | 1101 |
| 6 | 0110 | E | 1110 |
| 7 | 0111 | F | 1111 |



## Digital Logic - Introduction

An attempt at humor

- There are 10 types of people in the world: Those who get binary and those who don't. Which type are you?

1. I get it.
2. I don't get it.

