ECE 274 Report Template: Lab 1 Report Example
Derek Nielson, Lance Saldanha, Roman Lysecky
Department of Electrical and Computer Engineering
University of Arizona
{dgn, lance, rlysecky}@email.arizona.edu
Abstract
Lab 1 provides an introduction to the Verilog hardware description language (HDL), simulation and synthesis of digital circuits using Xilinx Integrated Software Environment (ISE), and implementation of a digital circuit using a field-programmable gate array (FPGA). The lab familiarizes students with the design, simulation, and synthesis of basic logic gates, including a 2-input AND gate, a 2-input OR gate, and an inverter (NOT gate), onto the Xilinx Spartan-3E Starter Board.
1. INTRODUCTION
A basic two-input AND gate, as shown in Figure 1, has two inputs, A and B, and a single output, F. An AND gate will output 1 only if both A and B are 1. The truth table for a two-input AND gate is provided in Figure 2.

Figure 1: Two-input AND gate.
[image: image1.png]

Figure 2: Truth table for two-input AND gate.
	INPUT
	OUTPUT

	A
	B
	F

	0
	0
	0

	0
	1
	0

	1
	0
	0

	1
	1
	1

A basic two-input OR gate, as shown in Figure 3, has two inputs, A and B, and a single output, F. An OR gate will output 1 if at least one of its inputs, A or B, are 1. The truth table for a two-input OR gate is provided in Figure 4.

Figure 3: Two-input OR gate.
[image: image2.png]@3>

Figure 4: Truth table for two-input OR gate.
	INPUT
	OUTPUT

	A
	B
	F

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	1

As shown in Figure 5, an inverter, also referred to as a NOT gate has a single input A and a single output F. An inverter will output the opposite of its Boolean input, e.g., if the input is 1 the inverter will output 0, and vice versa. The truth table for an inverter is provided in Figure 6.

Figure 5: Inverter (NOT gate).
[image: image3.png]

Figure 6: Truth table for inverter (NOT gate).
	INPUT
	OUTPUT

	A
	F

	0
	1

	1
	0

2. IMPLEMENTATION

The Verilog code for a 2-input AND gate is shown in Figure 7. The description begins with a timescale directive that defines the time units used during simulation. The declaration of a Verilog module consists of defining the module name (and2gate) followed by a list of all inputs and outputs within parenthesis. All inputs and outputs of the module are explicitly defined within the module using input and output statements. Note that outputs should be defined as a reg type in order to assign a value within always procedure. The functionality of the module is defined within an always procedure that is sensitive to the AND gate’s A and B inputs. The always procedure consists of a single assignment statement that assigns “A & B” to the output F.
Figure 7: Verilog code for two-input AND gate.
`timescale 1ns / 1ps
module and2gate(A, B, F);

input A, B;

output F;

reg F;
always @ (A, B)

begin

F <= A & B;

end

endmodule

In order to test a design for correct functionality, a testbench can be used to provide input stimuli to the design and monitor the outputs. The testbench used to test the and2gate module is provided in Figure 8. The testbench is defined as a module named and2gate_tb that has no inputs or outputs and instantiates a single instance of the and2gate design. As the testbench will assign values to the instance’s inputs and read the outputs, reg nets are used to connect to the instance’s inputs and wires are used to the connect to the instance’s outputs. The testbench for the module consists of a single initial procedure that exhaustively tests all possible input combinations of the and2gate design, printing the results of each test case using the $display function.

To simulate and test the and2gate design, both the and2gate and and2gate_tb modules are checked for correct syntax and simulated using the Xilinx ISE Simulator.
Figure 8: Verilog testbench for two-input AND gate design.
`timescale 1ns / 1ps
module and2gate_tb();

reg A_t, B_t;

wire F_t;
and2gate and2gate_1(A_t, B_t, F_t);
initial

begin

// case 0

A_t<=0; B_t<=0;

#1 $display("F_t = %b", F_t);
// case 1

A_t<=0; B_t<=1;

#1 $display("F_t = %b", F_t);
// case 2

A_t<=1; B_t<=0;

#1 $display("F_t = %b", F_t);
// case 3

A_t<=1; B_t<=1;

#1 $display("F_t = %b", F_t);

end

endmodule
Implementing the design onto the Xilinx Spartan-3E FPGA Starter Board requires the design to be synthesized for the target FPGA. This process includes selecting the appropriate Spartan-3E FPGA devices within the project’s properties. The basic procedure involved in implementing a design on an FPGA includes specifying user constraints, synthesizing the design, implementing the design, and downloading the resulting bitstream to the FPGA. A User Constraints File (UCF) is needed to assign the and2gate’s inputs and outputs to the appropriate pins of the FPGA. The simplify this process, the Xilinx Spartan-3E FPGA Starter Board includes the FPGA pins numbers printed on the board next to the various components, such as LEDs, buttons, connectors, switches, etc. For the 2-input AND gate, the inputs were connected to switches on the board, and the single output was connected to an LED. The resulting UCF file is presented in Figure 9.
Figure 9: UCF file.

NET "A" LOC = "N17";

NET "B" LOC = "H18";

NET "F" LOC = "F12";
After specifying the user constraints, the design can be synthesized and implemented, by executing the Synthesize – XST and Implement Design commands within Xilinx ISE tool. The final bitstream needed to program the FPGA can then be generated by executing the Generate Programming File command.
The resulting bitstream file provides the configuration needed to program the FPGA to implement the target design, much in the same way that a software binary provides the configuration for executing a software application on a microprocessor. The Configure Device (iMPACT) command will launch the Xilinx iMPACT tools that will communicate with the Xilinx Spartan-3E FPGA Starter Board using the provided USB cable to program the FPGA.
3. EXPERIMENTAL Results

The Verilog descriptions to the two-input AND gate, two-input OR gate, and inverter were verified through simulation using the Xilinx ISE Simulator and through exhaustive testing after downloading each design to the Xilinx Spartan-3E FPGA Starter Board. As was to be expected, the 2-input AND gate produced the correct outputs for the various possible input combinations. As shown in Figure 10, the AND gate only outputs 1 when both inputs, A and B are 1.
Figure 10: Simulation waveform verifying correct behavior of two-input AND gate design.
[image: image4.jpg]Now:
10 ns

et
Mt
et

Figure 11 presents the simulation waveform for the two-input OR gate design and illustrates the correct operation of an OR gate. The OR gate design correctly outputs 1 whenever at least one of the inputs, A or B is a 1.

 Figure 11: Simulation waveform verifying correct behavior of two-input OR design.
[image: image5.jpg]Now:
10 ns

et
Mt
et

Figure 12 illustrates the simulation waveform for the inverter design and correctly demonstrates that an input of 1 will result in an output of 0, and vice versa.

Figure 12: Simulation waveform verifying correct behavior of inverter design.
[image: image6.jpg]Now:
10ns

et

At

Finally, the AND gate and OR gate designs were implemented on the Xilinx Spartan-3E FPGA Starter Board and exhaustively tested by iterating through all possible input combinations while observing the output LED to ensure correctness.
4. CONCLUSIONS
The two-input AND gate, two-input OR gate, and inverter designs were successfully implemented using the Verilog hardware description language and verifying through simulation using Xilinx ISE and physical implementation on the Xilinx Spartan-3E FPGA Starter Board. The basic methodology for deigning and implementing digital circuits using FPGAs provides a solid foundation for learning Verilog based digital design.

