ECE 274 Digital Logic - Fall 2008

Datapath Components - Adders and
I ncrementers
Digital Design 4.3, 4.6
tre unvizertron
ARIZONA
tucson Anzoma

Datapath Components
 Adders

O Adds two N-bit binary numbers

- 2-bit adder: adds two 2-bit numbers, outputs 3-bit result
ㅁ e.g., $01+11=100 \quad(1+3=4)$
- Can design using combinational logic design process, but doesn't work well for reasonable-size N
- Why not?

Datapath Components

```
    Slides to accompany the textbook Digital Design, First Edition,
    htp//www.ddvahid.com
hunr Wirey and Sons Publishers, 2007
htp://www.ddvahid.co
```


Copyright © 2007 Frank Vahid

Digital Design

Chapter 4

Datapath Components

Why Not Use Standard Combinational Design Process

- Truth table too big
- 2-bit adder's truth table shown
\circ Has $2^{(2+2)}=16$ rows
- 8-bit adder: $2^{(8+8)}=65,536$ rows
- 16-bit adder: $2^{(16+16)}=\sim 4$ billion rows
- 32-bit adder: ..
- Big truth table with numerous $1 \mathrm{~s} / 0$ s yields big logic
\square Plot shows number of transistors for N -bit adders, using state-of-the-art automated combinational design tool

How many of transistors are needed for a 16-bit

Datapath Components

Alternative Method: Imitate Adding by Hand

o Alternative Adder Design Method

\square Mimic how people do addition by hand
\square One column at a time

- Compute sum, add carry to next column

Datapath Components

Alternative Method: Imitate Adding by Hand
Create component for each column

- Adds that column's bits, generates sum and carry bits

Datapath Components

Full-Adder

- Full-adder: Adds 3 bits, generates sum and carry
Design using combinational design process from Ch 2

Step 1: Capture the functio

Inputs			Outputs	
a	b	ci	∞	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Datapath Components

Datapath Components

Carry-Ripple Adder

carry-Ripple Adder

- Using half-adder and full-adders, we can build adder that adds like we
o Using full-adder instead of half-adder for first bit, we can include a "carry in" bit in the addition
Called a carry-ripple adder
- 4-bit adder shown: Adds two 4-bit numbers, generates 5-bit output

5-bit output can be considered 4 -bit "sum" plus 1-bit "carry out"

- Can easily build any size adder

\square Will be useful later when we connect smaller adders to form bigger adders

$1|1| 1 \mid 1$
a3a2a1a0 b3b2b1b0 4-bit adder
$\stackrel{\text { co }}{\text { cos }} \mathrm{s} 2 \mathrm{~s} 1 \mathrm{so}$
(b)

Datapath Components
 Carry-Ripple Adder's Behavior

Datapath Components

Carry-Ripple Adder's Behavior

0111+0001

