ECE 274 Digital Logic - Fall 2008

Combinational Logic Design Process and Common Combinational Components Digital Design 2.7-2.10

Digital Design

Chapter 2:
Combinational Logic Design

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.
d, John Wiley and Sons PP

Copyright © 2007 Frank Vahid

Digital Logic - Combinational Logic

Combinational Logic Design Process Example: Three 1s Detector

- Problem: Detect three consecutive 1s
in 8-bit input: abcdefgh
$1111000101011 \rightarrow 0$
$11110000 \rightarrow$
- Step 1: Capture the function
- Truth table or equation?
- Truth table too big: 2^8=256 rows
- Equation: create terms for each

Equation: create terms for each
possible case of three consecutive 1s $\stackrel{y}{\mathbf{y}=}$

- Step 2: Convert to equation --
already done
\square Step 3: I mplement as a gate-based circuit

Digital Logic - Combinational Logic

Combinational Logic Design Process Example: Number of 1s Count

- Problem: Output in binary on
two outputs yz the number of 1s on three inputs
$0010 \rightarrow 01 \quad 101 \rightarrow 10 \quad 000 \rightarrow 00$
\square Step 1: Capture the function - Truth table or equation?
\square Truth table is straightforward
- Step 2: Convert to equation $-y=a{ }^{\prime} b c+a b^{\prime} c+a b c^{\prime}+a b c$ $0 z=a^{\prime} b^{\prime} c+a^{\prime} b c^{\prime}+a b^{\prime} c^{\prime}+a b c$
- Step 3: I mplement as a gate based circuit

Digital Logic - Combinational Logic
More Gates

- NAND: Opposite of AND ("NOT AND") • NAND same as AND with power \&
- NOR: Opposite of OR ("NOT OR")

XOR: Exactly 1 input is 1 , for 2 -input XOR. (For more inputs -- odd number of 1s) ground switched

Why? nMOS conducts Os well, but not 1s (reasons beyond our scope) -- so NAND more efficient

- Likewise, NOR same as OR with power/ground switched
- AND in CMOS: NAND with NOT
- OR in CMOS: NOR with NOT
- So NAND/NOR more common

Digital Logic - Combinational Logic
 Completeness of NAND

- Any Boolean function can be implemented using just NAND gates. Why?
\square Need AND, OR, and NOT
- NOT: 1-input NAND (or 2-input NAND with inputs tied together)
- AND: NAND followed by NOT
- OR: NAND preceded by NOTs
- Likewise for NOR

Digital Logic - Combinational Logic
 Number of Possible Boolean Functions

- How many possible functions of 2 variables? - 2^{2} rows in truth table, 2 choices for each - $2^{\left(2^{2}\right)}=2^{4}=16$ possible functions
- N variables
- 2^{N} rows

a	b	F
0	0	0 or 12 choices
0	1	0 or 12 choices
1	0	0 or 12 choices
1	1	0 or 12 choices
		$\begin{gathered} 2^{4}=16 \\ \text { possible functions } \end{gathered}$

- $2^{\left(2^{\mathrm{N}}\right)}$ possible functions

- Decoder: Popular combinational logic building block, in addition to logic gates

$$
\int_{\text {do }}
$$

-i0 d1-0 10 do-0 do 0 do-0
 $\underbrace{}_{\mathrm{d} 3-0}$
2-input decoder: four possible
input binary numbers
So has four outputs, one for each possible input binary number

- Internal design
- AND gate for each output to detec input combination
- Decoder with enable e
- Outputs all 0 if $\mathrm{e}=0$
- Regular behavior if $\mathrm{e}=1$
- n -input decoder: 2^{n} outputs

Digital Logic - Combinational Logic

N-bit Mux

- What output of a 3×8 decoder will be asserted if $\mathrm{i} 2 i 1 i 0=110$?

1. $\mathrm{dO}=1$
2. $d 3=1$
3. $\mathrm{d} 6=1$
4. $d 7=1$

Digital Logic - Combinational Logic

 Multiplexor (Mux)
Digital Logic - Combinational Logic
 Mux Internal Design

- Mux: Another popular combinational building block
- Routes one of its N data inputs to its one output, based on binary value of select inputs

04 input mux \rightarrow needs 2 select inputs to indicate which input to route through
$\circ 8$ input mux $\rightarrow 3$ select inputs

- N inputs $\rightarrow \log _{2}(\mathrm{~N})$ selects
\square Like a railyard switch

Digital Logic - Combinational Logic
 Mux Example

Digital Logic - Combinational Logic

N-bit Mux

- City mayor (with no budget for good voting system) can set
- Example: Two 4-bit inputs, A (a3 a2 a1 a0), and B (b3 b2 b1 b0) four switches up or down, representing his/her vote on each of four proposals, numbered $0,1,2,3$
- 4-bit 2×1 mux (just four 2×1 muxes sharing a select line) can select
- City manager can display any such vote on large green/red LED (light) by setting two switches to represent binary 0,1 ,

2 , or 3

- Use 4×1 mux

Digital Design
COpyright © 2006
Copyright © 200
Frank Vahid

between A or B

Digital Logic - Combinational Logic
N-bit Mux

- If $A=5, B=2$, what is the output of the 4 -bit 2×1 mux if $s 0=1$?

1. 0
2. 5
3. 2
4. 7

Digital Logic - Combinational Logic N-bit Mux Example

- Four possible display items
- Temperature (T), Average miles-per-gallon (A), Instantaneous mpg (I), and Miles remaining (M) -- each is 8 -bits wide
\square Choose which to display using two inputs x and y
ㅁ Use 8-bit 4x1 mux

```
Digital Logic - Combinational Logic
Non-Ideal Gate Behavior -- Delay
```


Real gates have some delay

- Outputs don't change immediately after inputs change

Digital Design
Copyright 02006 Copyright © 2006
Frank Vahid

Digital Logic - Combinational Logic Encoders

Encoder: Combinational logic buildin
block with opposite functionality of
decoder
Outputs binary encoding for input signal that is 1
4×2 encoder would have four inputs $1-\mathrm{do} \quad 0-\mathrm{do}$

 and 2 outputs

- What if two inputs are 1 ?
- Can use a priority encoder
- Gives priority to the highest input that is 1 , and outputs binary encoding for that input
- Example: If $\mathrm{d} 3=1$ and $\mathrm{d} 1=1$, will output $\mathrm{e} 0=1$ and $\mathrm{e} 1=1$ because d 3 has priority
$\begin{array}{ll}0-\mathrm{do} \\ 1-\mathrm{d} 1 & \mathrm{eo} \\ -1\end{array}$
$\begin{array}{ll}1-\mathrm{d} 1 & \mathrm{e}-\mathrm{O}^{-1} \\ 0-\mathrm{d} 2 & \text { e1 } \\ -1\end{array}$
1-d3

Digital Logic - Combinational Logic
 In Class Exercise

o Design a 4×2 encoder using AND, OR, and NOT gates.

