

Digital Logic – Combinational Logic Combinational Logic Design Process			2.7
	Step	Description	
Step 1	Capture the function	Create a truth table or equations, <i>whichever is</i> <i>most natural for the given problem</i> , to describe the desired behavior of the combinational logic.	
Step 2	Convert to equations	This step is only necessary if you captured the function using a truth table instead of equations. Create an equation for each output by ORing all the minterms for that output. Simplify the equations if desired.	
Step 3	Implement as a gate- based circuit	For each output, create a circuit corresponding to the output's equation. (Sharing gates among multiple outputs is OK optionally.)	
			3

Digital Logic – Combinational Logic *Mux Example*

- City mayor (with no budget for good voting system) can set four switches up or down, representing his/her vote on each of four proposals, numbered 0, 1, 2, 3
- City manager can display any such vote on large green/red LED (light) by setting two switches to represent binary 0, 1, 2, or 3 Mayor's switches

Frank Vahid

13

Digital Logic – Combinational Logic N-bit Mux

- Example: Two 4-bit inputs, A (a3 a2 a1 a0), and B (b3 b2 b1 b0)
 - 4-bit 2x1 mux (just four 2x1 muxes sharing a select line) can select between A or B

