
1

ECE 274 Digital Logic – Fall 2008

Basic Logic Gates
Digital Design 2.1 – 2.6

2

Digital Design

Chapter 2:
Combinational Logic Design

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

3

Digital Logic – Combinational Logic
Introduction

Combinational

digital circuit

1
a

b

1
F0

1
a

b

?
F0

Let’s learn to design digital circuits
We’ll start with a simple form of circuit:

Combinational circuit
A digital circuit whose outputs depend solely on the
present combination of the circuit inputs’ values

Digital circuit

2.1

Sequential

digital circuit

4

Digital Logic – Combinational Logic
Switches

Electronic switches are the basis of
binary digital circuits

Electrical terminology
Voltage: Difference in electric potential
between two points

Analogous to water pressure

Current: Flow of charged particles
Analogous to water flow

Resistance: Tendency of wire to resist
current flow

Analogous to water pipe diameter

V = I * R (Ohm’s Law)

4.5 A

4.5 A

4.5 A

2 ohms

9V

0V 9V

+–

2.2

2

5

Digital Logic – Combinational Logic
Switches

A switch has three parts
Source input, and output

Current wants to flow from source
input to output

Control input
Voltage that controls whether that
current can flow

The amazing shrinking switch
1930s: Relays
1940s: Vacuum tubes
1950s: Discrete transistor
1960s: Integrated circuits (ICs)

Initially just a few transistors on
IC
Then tens, hundreds, thousands...

“off”

“on”

outputsource
input

outputsource
input

control
input

control
input

(b)

relay vacuum tube

discrete
transistor

IC

quarter
(to see the relative size)

a

6

Digital Logic – Combinational Logic
Moore’s Law

IC capacity doubling about every 18 months for several decades
Known as “Moore’s Law” after Gordon Moore, co-founder of Intel

Predicted in 1965 predicted that components per IC would double roughly every
year or so

Today’s ICs hold billions of transistors
The first Pentium processor (early 1990s) needed only 3 million

An Intel Pentium processor IC
having millions of transistors

7

Digital Logic – Combinational Logic
CMOS Transistor

CMOS transistor
Basic switch in modern ICs

gate

source drain
oxide

A positive
voltage here...

...attracts electrons here,
turning the channel

between source and drain
into aconductor.

(a)

IC package

IC

does not
conduct

0

conducts

1gate

nMOS

does not
conduct

1
gate

pMOS

conducts

0

Silicon -- not quite a conductor or insulator:
Semiconductor

2.3

a

8

Digital Logic – Combinational Logic
Boolean Logic Gates - Building Blocks for Digital Circuits

“Logic gates” are better digital circuit building blocks than switches (transistors)
Why?...

2.4

3

9

Digital Logic – Combinational Logic
Boolean Algebra and its Relation to Digital Circuits

To understand the benefits of “logic gates” vs.
switches, we should first understand Boolean algebra
“Traditional” algebra

Variable represent real numbers
Operators operate on variables, return real numbers

Boolean Algebra
Variables represent 0 or 1 only
Operators return 0 or 1 only
Basic operators

AND: a AND b returns 1 only when both a=1 and b=1
OR: a OR b returns 1 if either (or both) a=1 or b=1
NOT: NOT a returns the opposite of a (1 if a=0, 0 if a=1)

a
0
0
1
1

b
0
1
0
1

AND
0
0
0
1 a

0
0
1
1

b
0
1
0
1

OR
0
1
1
1a

0
1

NOT
1
0

10

Digital Logic – Combinational Logic
Boolean Algebra and its Relation to Digital Circuits

Developed mid-1800’s by George Boole to formalize human thought
Ex: “I’ll go to lunch if Mary goes OR John goes, AND Sally does not go.”

Let F represent my going to lunch (1 means I go, 0 I don’t go)
Likewise, m for Mary going, j for John, and s for Sally
Then F = (m OR j) AND NOT(s)

Nice features
Formally evaluate

m=1, j=0, s=1 --> F = (1 OR 0) AND NOT(1) = 1 AND 0 = 0

Formally transform
F = (m and NOT(s)) OR (j and NOT(s))

Looks different, but same function
We’ll show transformation techniques soon

a
0
0
1
1

b
0
1
0
1

AND
0
0
0
1

a
0
0
1
1

b
0
1
0
1

OR
0
1
1
1

a
0
1

NOT
1
0

11

Digital Logic – Combinational Logic
Evaluating Boolean Equations

1 0

0%0%

Evaluate the Boolean equation: F = (a AND b) OR (c
AND d), where a=1, b=1, c=1, d=0. What is the value
of F?

1. 1
2. 0

12

Digital Logic – Combinational Logic
Evaluating Boolean Equations

1 0

0%0%

Evaluate the Boolean equation: F = (a AND b) OR (c
AND d), where a=0, b=1, c=0, d=1. What is the value
of F?

1. 1
2. 0

4

13

Digital Logic – Combinational Logic
Evaluating Boolean Equations

1 0

0%0%

Evaluate the Boolean equation: F = (a AND b) OR (c
AND d), where a=1, b=1, c=1, d=1. What is the value
of F?

1. 1
2. 0

14

Digital Logic – Combinational Logic
Converting to Boolean Equations

Convert the following English
statements to a Boolean equation

Q1. a is 1 and b is 1.
Answer: F = a AND b

Q2. either of a or b is 1.
Answer: F = a OR b

Q3. both a and b are not 0.
Same as saying: both a and b are 1 (not 0)
Answer: F = a AND b

Q4. both a and b are not 1.
Answer: F = NOT(a) AND NOT(b)

Q5. a is 1 and b is 0.
Answer: F = a AND NOT(b)

a

15

Digital Logic – Combinational Logic
Relating Boolean Algebra to Digital Design

Implement Boolean operators using transistors
Call those implementations logic gates.
Let’s us build circuits by doing math --
powerful concept

Boolean
algebra

(mid-1800s)

Boole’s intent: formalize
human thought

Switches
(1930s)

Shannon (1938)

Digital design

Showed application
of Boolean algebra
to design of switch-

based circuits

x
0
0
1
1

y
0
1
0
1

F
0
0
0
1

x
0
0
1
1

y
0
1
0
1

F
0
1
1
1

x
0
1

F
1
0

Fx
x
y F

ORNOT

F
x
y

AND

0

1

y

x

x

y

F

1

0

Fx

Symbol

Truth table

Transistor
circuit

0

1

x y

F
y

x

Note: These OR/AND
implementations are inefficient;
we’ll show why, and show better

ones later.

For telephone
switching and other

electronic uses

16

Digital Logic – Combinational Logic
NOT/OR/AND Logic Gate Timing Diagrams

0
1

1

0

time

F

x

1

0
x

y

F
1

1

0

0

time

1

0
x

y

F
1

1

0

0

time

5

17

Digital Logic – Combinational Logic
Building Circuits Using Gates

Motion-in-dark Detector
Turn on lamp (F=1) when motion sensed (a=1) and no light (b=0)
F = a AND NOT(b)
Build using logic gates, AND and NOT, as shown
We just built our first digital circuit!

18

Which circuit corresponds to the Boolean Equation:
F = a AND NOT(b OR NOT(c))

 C
irc

uit 1

 C
irc

uit 2

 C
irc

uit 3

0% 0%0%

1. Circuit 1

2. Circuit 2

3. Circuit 3

a
b

c
F

a
F

a
b

c
F

19

Digital Logic – Combinational Logic
Example: Seat Belt Warning Light System

Design circuit for warning light
Sensors

s=1: seat belt fastened
k=1: key inserted
p=1: person in seat

Capture Boolean equation
person in seat, and seat belt not
fastened, and key inserted

Convert equation to circuit
Notice

Boolean algebra enables easy capture
as equation and conversion to circuit

How design with switches?
Of course, logic gates are built from
switches, but we think at level of logic
gates, not switches

w = p AND NOT(s) AND k

k

p

s

w

BeltWarn

20

Digital Logic – Combinational Logic
Some Circuit Drawing Conventions

x
y

F

no yes

no

not ok

ok

yes

6

21

Digital Logic – Combinational Logic
Boolean Algebra

By defining logic gates based on Boolean algebra, we can use algebraic
methods to manipulate circuits

So let’s learn some Boolean algebraic methods

Start with notation: Writing a AND b, a OR b, and NOT(a) is
cumbersome

Use symbols: a * b, a + b, and a’ (in fact, a * b can be just ab).
Original: w = (p AND NOT(s) AND k) OR t
New: w = ps’k + t

Spoken as “w equals p and s prime and k, or t”
Or even just “w equals p s prime k, or t”
s’ known as “complement of s”

While symbols come from regular algebra, don’t say “times” or “plus”

2.5

22

Digital Logic – Combinational Logic
Boolean Algebra Operator Precedence

Evaluate the following Boolean equations, assuming a=1, b=1, c=0,
d=1.

F = ab + c.
Answer: the problem is identical to the previous problem, using the shorthand
notation for *.

F = ab’.
Answer: we first evaluate b’ because NOT has precedence over AND, resulting in F
= 1 * (1’) = 1 * (0) = 1 * 0 = 0.

F = (ac)’.
Answer: we first evaluate what is inside the parentheses, then we NOT the result,
yielding (1*0)’ = (0)’ = 0’ = 1.

a

Boolean algebra precedence, highest precedence first.

Symbol Name Description

() Parentheses Evaluate expressions nested in parentheses first

’ NOT Evaluate from left to right

* AND Evaluate from left to right

+ OR Evaluate from left to right

23

Digital Logic – Combinational Logic
Boolean Algebra Terminology

Example equation: F(a,b,c) = a’bc + abc’ + ab + c
Variable

Represents a value (0 or 1)
Three variables: a, b, and c

Literal
Appearance of a variable, in true or complemented form
Nine literals: a’, b, c, a, b, c’, a, b, and c

Product term
Product of literals
Four product terms: a’bc, abc’, ab, c

Sum-of-products
Equation written as OR of product terms only
Above equation is in sum-of-products form. “F = (a+b)c + d” is not.

24

Digital Logic – Combinational Logic
Boolean Algebra Properties

Commutative
a + b = b + a
a * b = b * a

Distributive
a * (b + c) = a * b + a * c
a + (b * c) = (a + b) * (a + c)

(this one is tricky!)

Associative
(a + b) + c = a + (b + c)
(a * b) * c = a * (b * c)

Identity
0 + a = a + 0 = a
1 * a = a * 1 = a

Complement
a + a’ = 1
a * a’ = 0

To prove, just evaluate all possibilities

Example: Show x + x’z equivalent to
x + z.

Second distributive property
Replace x+x’z by (x+x’)*(x+z).

Complement property
Replace (x+x’) by 1,

Identity property
replace 1*(x+z) by x+z.

7

25

Digital Logic – Combinational Logic
Boolean Algebra

 Yes N
o

0%0%

Can xx’ + xy(x’+y’) ever evaluate to 1?

1. Yes
2. No

26

Digital Logic – Combinational Logic
Boolean Algebra Properties

Null elements
a + 1 = 1
a * 0 = 0

Idempotent Law
a + a = a
a * a = a

Involution Law
(a’)’ = a

DeMorgan’s Law
(a + b)’ = a’b’
(ab)’ = a’ + b’
Very useful!

To prove, just
evaluate all
possibilities

Circuit
a

b

c

S

Circuit
Sa

b
c

Aircraft lavatory sign
example

Three lavatories, each
with sensor (a, b, c),
equals 1 if door locked
Light “Available” sign
(S) if any lavatory
available

Equation and circuit
S = a’ + b’ + c’

Transform
(abc)’ = a’+b’+c’ (by
DeMorgan’s Law)
S = (abc)’

New equation and circuit
Both are equivalent

27

Digital Logic – Combinational Logic
Representations of Boolean Functions

2.6

a

a

b

F

F

Circuit 1

Circuit 2

English 1: F outputs 1 when a is 0 and b is 0, or when a is 0 and b is 1.
English 2: F outputs 1 when a is 0, regardless of b’s value

a
0
0
1
1

b
0
1
0
1

F
1
1
0
0

The function F

Truth table

Equation 2: F(a,b) = a’
Equation 1: F(a,b) = a’b’ + a’b

A function can be represented in different ways
Here are seven representations of the same function using four
different methods: English, Equation, Circuit, and Truth Table

28

Digital Logic – Combinational Logic
Truth Table Representation of Boolean Functions

Define value of F for each
possible combination of
input values

2-input function: 4 rows
3-input function: 8 rows
4-input function: 16 rows

Q: Use truth table to
define function F(a,b,c)
that is 1 when abc is 5 or
greater in binary

c
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

d
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

a
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

b
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

Fc
0
1
0
1
0
1
0
1

a
0
0
0
0
1
1
1
1

b
0
0
1
1
0
0
1
1

Fa
0
0
1
1

b
0
1
0
1

F

(a)

(b)

(c)

c
0
1
0
1
0
1
0
1

a
0
0
0
0
1
1
1
1

b
0
0
1
1
0
0
1
1

F
0
0
0
0
0

1
1

1

a

8

29

a
0
0
1
1

b
0
1
0
1

F

Inputs Output

a' b' a' b

Digital Logic – Combinational Logic
Converting among Representations

Can convert from any representation
to any other
Common conversions

Equation to circuit (we did this earlier)
Truth table to equation (which we can
convert to circuit)

Easy -- just OR each input term that
should output 1

Equation to truth table
Easy -- just evaluate equation for each
input combination (row)
Creating intermediate columns helps

a
0
0
1
1

b
0
1
0
1

F
1
1
0
0

Inputs Outputs

F = sum of
a’b’
a’b

Term

F = a’b’ + a’b

c
0
1
0
1
0
1
0
1

a
0
0
0
0
1
1
1
1

b
0
0
1
1
0
0
1
1

F
0
0
0
0
0

1
1

1

Q: Convert to equation

a

F = ab’c + abc’ + abc

ab’c
abc’
abc1

1
0
0

1
0
0
0

0
1
0
0

a

Q: Convert to truth table: F = a’b’ + a’b

30

Digital Logic – Combinational Logic
Standard Representation: Truth Table

How can we determine if
two functions are the
same?

Is f = c’hp + c’hp’ + c’h’ the
same as f = hc’ + h’pc’?

Use algebraic methods
But if we failed, does that
prove not equal? No.

Solution: Convert to truth
tables

Only ONE truth table
representation of a given
function

Standard representation --
for given function, only one
version in standard form
exists

f = c’hp + c’hp’ + c’h’

f = c’h(p + p’) + c’h’p

f = c’h(1) + c’h’p

f = c’h + c’h’p

(what if we stopped here?)

a
0
0
1
1

b
0
1
0
1

F
1
1
0
1

F = ab + a'

a
0
0
1
1

b
0
1
0
1

F
1
1
0
1

F = a’b’ +
a’b + ab

Q: Determine if F=ab+a’ is same
function as F=a’b’+a’b+ab, by converting
each to truth table first

a

Same

31

Digital Logic – Combinational Logic
Canonical Form -- Sum of Minterms

Truth tables too big for numerous inputs
Use standard form of equation instead

Known as canonical form
Regular algebra: group terms of polynomial by power

ax2 + bx + c (3x2 + 4x + 2x2 + 3 + 1 --> 5x2 + 4x + 4)
Boolean algebra: create sum of minterms

Minterm: product term with every function variable appearing exactly
once, in true or complemented form
Just multiply-out equation until sum of product terms
Then expand each term until all terms are minterms

Q: Determine if F(a,b)=ab+a’ is same function as F(a,b)=a’b’+a’b+ab, by
converting first equation to canonical form (second already in canonical
form) F = ab+a’ (already sum of products)

F = ab + a’(b+b’) (expanding term)
F = ab + a’b + a’b’ (SAME -- same three terms as other equation)

a

32

Digital Logic – Combinational Logic
Multiple-Output Circuits

Many circuits have more than one output
Can give each a separate circuit, or can share gates
Ex: F = ab + c’, G = ab + bc

a
b

c

F

G

(a)

a
b

c

F

G

(b)

Option 1: Separate circuits Option 2: Shared gates

9

33

Digital Logic – Combinational Logic
Multiple-Output Example: BCD to 7-Segment Converter

a = w’x’y’z’ + w’x’yz’ + w’x’yz + w’xy’z +
w’xyz’ + w’xyz + wx’y’z’ + wx’y’z

abcdefg = 1111110 0110000 1101101

a
f
b

d

g
e
c

(b)(a)

b = w’x’y’z’ + w’x’y’z + w’x’yz’ + w’x’yz +
w’xy’z’ + w’xyz + wx’y’z’ + wx’y’z

34

Digital Logic – Combinational Logic
In Class Exercise

Convert the following Boolean equations to a digital circuit,
sharing gates wherever possible.

F(a,b,c) = abc + a’b’c + bc’
G(a,b) = ab + a’b’

