ECE 274 Digital Logic - Fall 2008

Basic Logic Gates

Digital Design 2.1 - 2.6

Digital Design

Chapter 2:
Combinational Logic Design
Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.
htp://www.ddvahid.com

Copyright © 2007 Frank Vahid

We'll start with a simple form of circuit

- Combinational circuit
- A digital circuit whose outputs depend solely on th present combination of the circuit inputs' values

Digital Logic - Combinational Logic
 Switches

```
O A switch has three parts
    \square Source input, and output
        - Current wants to flow from source
        input to output
    - Control input
        Voltage that controls whether that
        Voltage that con
    The amazing shrinking switch
    \square 1930s: Relays
    \square 1940s: Vacuum tubes
    \square 1950s: Discrete transistor
    \square 1960s: Integrated circuits (ICS)
        \sigma Initially just a few transistors on
        IC
    \circThen tens, hundreds, thousands..
```


Digital Logic - Combinational Logic

Moore's Law

- IC capacity doubling about every 18 months for several decades
- Known as "Moore's Law" after Gordon Moore, co-founder of Intel
- Predicted in 1965 predicted that components per IC would double roughly every year or so
- Today's ICs hold billions of transistors
- The first Pentium processor (early 1990s) needed only 3 million

Digital Logic - Combinational Logic

Boolean Algebra and its Relation to Digital Circuits

- To understand the benefits of "logic gates" vs. switches, we should first understand Boolean algebra
- "Traditional" algebra
\square Variable represent real numbers
- Operators operate on variables, return real numbers
- Boolean A/gebra
- Variables represent 0 or 1 only
\square Operators return 0 or 1 only
- Basic operators
- AND: $a \operatorname{AND} b$ returns 1 only when both $\mathrm{a}=1$ and $\mathrm{b}=1$
- OR: a OR b returns 1 if either (or both) $a=1$ or $b=1$
- NOT: NOT a returns the opposite of $a(1 \text { if } a=0,0 \text { if } a=1 \text {) })_{0}^{a}$

Digital Logic - Combinational Logic

Boolean Algebra and its Relation to Digital Circuits

- Developed mid-1800's by George Boole to formalize human thought
- Ex: "I'll go to lunch if Mary goes OR J ohn goes, AND Sally does not go."
- Let F represent my going to lunch (1 means I go, 0 I don't go)
- Likewise, m for Mary going, j for John, and s for Sally

Then $F=(\mathbf{m}$ OR $\mathbf{j})$ AND NOT(s)

- Nice features
- Formally evaluate
($\mathrm{m}=1, \mathrm{j}=0, \mathrm{~s}=1$--> $\mathrm{F}=(1 \mathrm{OR} 0)$ AND $\operatorname{NOT}(1)=1$ AND $0=\underline{\mathbf{0}}$
- Formally transform
- $F=(m$ and NOT(s) \quad OR $(\mathrm{j}$ and NOT(s)
- We'll show transformation techniques soon

Digital Logic - Combinational Logic
 Evaluating Boolean Equations

Digital Logic - Combinational Logic
 Evaluating Boolean Equations

○ Evaluate the Boolean equation: $\mathrm{F}=(\mathrm{a}$ AND b) OR (c AND d), where $a=1, b=1, c=1, d=0$. What is the value

Evaluate the Boolean equation: $F=(a$ AND b) $O R(c$ AND d), where $a=0, b=1, c=0, d=1$. What is the value of F ?

1. 1
2. 1
3. 0
4. 0

Digital Logic - Combinational Logic
 Evaluating Boolean Equations

Digital Logic - Combinational Logic
Converting to Boolean Equations

- Evaluate the Boolean equation: $\mathrm{F}=(\mathrm{a}$ AND b) OR (c AND d), where $a=1, b=1, c=1, d=1$. What is the value of F ?

Convert the following English statements to a Boolean equation

1. 1
\square Q1. a is 1 and b is 1 .

- Answer: $\mathrm{F}=\mathrm{a}$ AND b
- Q2. either of a or b is 1 .
- Answer: F = a OR b
- Q3. both a and b are not 0
- Same as saying: both a and b are 1 (not 0
- Answer: F=a AND b
\square Q4. both a and b are not 1 .
- Answer: $\mathrm{F}=\operatorname{NOT}(\mathrm{a})$ AND NOT(b)

- Q5. a is 1 and b is 0 .
- Answer: $\mathrm{F}=\mathrm{a}$ AND NOT(b)

Digital Logic - Combinational Logic
nOT/OR/AND Logic Gate Timing Diagrams

Digital Logic - Combinational Logic
 Building Circuits Using Gates

Which circuit corresponds to the Boolean Equation:

$\mathrm{F}=\mathrm{a}$ AND NOT(b OR NOT(c))

- Motion-in-dark Detector
- Turn on lamp ($\mathrm{F}=1$) when motion sensed $(\mathrm{a}=1$) and no light $(\mathrm{b}=0$)
$\square \mathrm{F}=\mathrm{a}$ AND NOT(b)
- Build using logic gates, AND and NOT, as shown
- We just built our first digital circuit!

1. Circuit 1

2. Circuit 2

3. Circuit 3

Digital Logic - Combinational Logic
 Examole: Seat Belt Warning Light System

Digital Logic - Combinational Logic

Some Circuit Drawing Conventions

- Design circuit for warning light
- Sensors

ㅁ $\mathrm{s}=1$: seat belt fastened

- $\mathrm{k}=1$: key inserted

ㅁ $\mathrm{p}=1$: person in seat

- Capture Boolean equation
- person in seat, and seat belt not fastened, and key inserted

- Convert equation to circuit

- Notice
- Boolean algebra enables easy capture as equation and conversion to circuit

How design with switches?

- Of course, logic gates are built from
switches, but we think at level of logic gates, not switches

$w=p$ AND NOT(s) AND k

Digital Logic - Combinational Logic
 Boolean Algebra

- By defining logic gates based on Boolean algebra, we can use algebraic methods to manipulate circuits
- So let's learn some Boolean algebraic methods
- Start with notation: Writing a AND b, a OR b, and NOT(a) is cumbersome
\square Use symbols: a * $b, a+b$, and a^{\prime} (in fact, a * b can be just $a b$).
- Original: $w=(p$ AND NOT(s) AND k) OR t
- New: w = ps'k + t

Spoken as " w equals p and s prime and k, or t
$s^{\prime} k$ ven just " w equals p s prime k, or t
as "complement of s"

- While symbols come from regular algebra, don't say "times" or "plus"

Digital Logic - Combinational Logic
Boolean Algebra Operator Precedence

Boolean algebra precedence, highest precedence firs.

symbol Name Descriptio

() Parentheses Evaluate expressions nested in parentheses first

NOT Evaluate from left to right

* AND Evaluate from left to righ
$+\quad$ OR Evaluate from left tor righ
- Evaluate the following Boolean equations, assuming $a=1, b=1, c=0$, $\mathrm{d}=1$.
$\square \mathrm{F}=\mathrm{ab}+\mathrm{c}$.
Answer: the problem is identical to the previous problem, using the shorthand $\mathrm{F}=\mathrm{ab}$.
- Answer: we first evaluate b^{\prime} because NOT has precedence over AND, resulting in F $=1 *\left(1^{\prime}\right)=1 *(0)=1 * 0=0$.
- $F=(a c)^{\prime}$.

Answer: we first evaluate what is inside the parentheses, then we NOT the result, yielding $\left(1^{*} 0\right)^{\prime}=(0)^{\prime}=0^{\prime}=1$.

```
Digital Logic - Combinational Logic
Boolean Algebra Properties
```


- Commutative

ㅁ $a+b=b+a$
ㅁ $a * b=b * a$

- Distributive
$\square a^{*}(b+c)=a * b+a * c$
- $a+(b * c)=(a+b) *(a+c)$
- (this one is tricky!)
- Associative
b) $+c=a+(b+c)$

Identity

- $0+a=a+0=a$

ㅁ $1 * a=a * 1=a$

- Complement
- $a+a^{\prime}=1$
a a * $a^{\prime}=0$
To prove, just evaluate all possibilities
- Example: Show $x+x^{\prime} z$ equivalent to $x+z$.
- Second distributive property
- Replace $x+x^{\prime} z$ by $\left(x+x^{\prime}\right) *(x+z)$.
- Complement property
dentity property
- replace $1^{*}(x+z)$ by $x+z$.

Digital Logic - Combinational Logic
 Boolean Algebra

- Can $x x^{\prime}+x y\left(x^{\prime}+y^{\prime}\right)$ ever evaluate to 1 ?

1. Yes
2. No

Digital Logic - Combinational Logic
Boolean Algebra Properties

- Null elements

- $a+1=1$
- a* $0=0$
- Idempotent Law

口 $a+a=a$

- $a * a=a$
- Involution Law口 $\left(\mathrm{a}^{\prime}\right)^{\prime}=\mathrm{a}$
- DeMorgan's Law ㅁ $(a+b)^{\prime}=a^{\prime} b^{\prime}$ $\square(a b)^{\prime}=a^{\prime}+b^{\prime}$ - Very useful!

To prove, just evaluate all possibilities

- Aircraft lavatory sign example
- Three lavatories, each with sensor ($\mathrm{a}, \mathrm{b}, \mathrm{c}$), equals 1 if door locked
- Light "Available" sign available
- Equation and circuit
- $\mathrm{S}=\mathrm{a}^{\prime}+\mathrm{b}^{\prime}+\mathrm{c}^{\prime}$

Transform

- $(\mathrm{abc})^{\prime}=\mathrm{a}^{\prime}+\mathrm{b}^{\prime}+\mathrm{c}^{\prime}(\mathrm{by}$ DeMorgan's Law)
$\mathrm{S}=(\mathrm{abc})^{\prime}$

New equation and circuit - Both are equivalent

Digital Logic - Combinational Logic

Representations of Boolean Functions

○ A function can be represented in different ways

- Here are seven representations of the same function using four different methods: English, Equation, Circuit, and Truth Table

Digital Logic - Combinational Logic
Truth Table Representation of Boolean Functions

- Define value of F for each
possible combination of
input values
- 2-input function: 4 rows
- 3-input function: 8 rows
- 4 -input function: 16 rows

Q: Use truth table to define function $F(a, b, c)$ that is 1 when abc is 5 or greater in binary

(c)

Digital Logic - Combinational Logic
 Converting among Representations

- Can convert from any representation to any other
- Common conversions
- Equation to circuit (we did this earlier)
- Truth table to equation (which we can convert to circuit)

Easy -- just OR each input term that should output 1

- Equation to truth table
- Easy -- just evaluate equation for each input combination (row)
- Creating intermediate columns helps

Q: Convert to truth table: $F=a^{\prime} b^{\prime}+a^{\prime} b$

Inputs								Output
a	b	$\mathrm{a}^{\prime} \mathrm{b}^{\prime}$	a^{b}	F				
0	0	1	0	1				
0	1	0	1	1				
1	0	0	0	0				
1	1	0	0	0				

Digital Logic - Combinational Logic Standard Representation: Truth Table
o How can we determine if two functions are the same?
$\mathrm{f}=\mathrm{c}^{\prime} h \mathrm{~h}+\mathrm{c}^{\prime} h \mathrm{p}^{\prime}+\mathrm{c}^{\prime} \mathrm{h}^{\prime}$
$\mathrm{f}=\mathrm{c}^{\prime} \mathrm{h}\left(\mathrm{p}+\mathrm{p}^{\prime}\right)+\mathrm{c}^{\prime} \mathrm{h}^{\prime} \mathrm{p}$
$f=c^{\prime} h(1)+c^{\prime} h^{\prime} p$

- Is f = c'hp + c'hp' + c'h' the same as $\mathrm{f}=\mathrm{hc}^{\prime}+\mathrm{h}^{\prime} \mathrm{pc}^{\prime}$?
- Use algebraic methods
- But if we failed, does that prove not equal? No.
o Solution: Convert to truth tables
- Only ONE truth table representation of a given function
- Standard representation for given function, only one version in standard form

$F=a b+a$			$\begin{aligned} & \mathrm{F}=\mathrm{a}^{\prime} \mathrm{a}^{\prime}+{ }^{\prime}+\mathrm{ab} \end{aligned}$	
a	b	a	$a \mathrm{~b}$	F
	0	$1{ }^{1}$		1
0	1	1 and	${ }^{2}$	1
	0	-sal	10	0
	1	1	1	1

$\mathrm{f}=\mathrm{c}^{\prime} \mathrm{h}+\mathrm{c}^{\prime} \mathrm{h}^{\prime} \mathrm{p}$
(what if we stopped here?)

Q: Determine if $F=a b+a$ ' is same function as $\mathrm{F}=\mathrm{a}^{\prime} \mathrm{b}^{\prime}+\mathrm{a} \mathrm{a}^{\prime} \mathrm{b}+\mathrm{ab}$, by converting each to truth table first

Digital Logic - Combinational Logic
 Canonical Form -- Sum of Minterms

o Truth tables too big for numerous inputs

o Use standard form of equation instead

- Known as canonical form
- Regular algebra: group terms of polynomial by power

$$
a x^{2}+b x+c \quad\left(3 x^{2}+4 x+2 x^{2}+3+1-->5 x^{2}+4 x+4\right)
$$

- Boolean algebra: create sum of minterms
- Minterm: product term with every function variable appearing exactly once, in true or complemented form
- Just multiply-out equation until sum of product terms
- Then expand each term until all terms are minterms

Q: Determine if $F(a, b)=a b+a^{\prime}$ is same function as $F(a, b)=a^{\prime} b^{\prime}+a^{\prime} b+a b$, by converting first equation to canonical form (second already in canonical form)
$F=a b+a^{\prime}$ (already sum of products)
$F=a b+a^{\prime}\left(b+b^{\prime}\right)$ (expanding term)
$F=a b+a '(b+b)$ (expanding term)
$F=a b+a^{\prime} b+a^{\prime} b^{\prime}$ (SAME -- same three terms as other equation)

Digital Logic - Combinational Logic Multiple-Output Circuits

- Many circuits have more than one output
- Can give each a separate circuit, or can share gates

○ Ex: $F=a b+c^{\prime}, \quad G=a b+b c$

Option 1: Separate circuits

(b)

Option 2: Shared gates

Digital Logic - Combinational Logic

In Class Exercise
Convert the following Boolean equations to a digital circuit, sharing gates wherever possible.

- $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{abc}+\mathrm{a} \mathrm{a}^{\prime} \mathrm{c}+\mathrm{bc}^{\prime}$
$\square \mathrm{G}(\mathrm{a}, \mathrm{b})=\mathrm{ab}+\mathrm{a}^{\prime} \mathrm{b}^{\prime}$

