
1

ECE 274 Digital Logic – Fall 2008

Implementation
Digital Design 7

Digital Design

Chapter 7:
Implementation

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

3

Introduction

A digital circuit design is just an idea, perhaps drawn on
paper
We eventually need to implement the circuit on a physical
device

How do we get from (a) to (b)?

7.1

sik

p

s

w

Belt W arn

IC

(a) Digital circuit
design

(b) Physical
implementation

Note: Slides with animation are denoted with a small red "a" near the animated items 4

Manufactured IC Technologies

We can manufacture our own IC
Months of time and millions of dollars
(1) Full-custom or (2) semicustom

(1) Full-custom IC
We make a full custom layout

Using CAD tools
Layout describes the location and size of
every transistor and wire

A fab (fabrication plant) builds IC for layout
Hard!

Fab setup costs ("non-recurring engineering",
or NRE, costs) high
Error prone (several "respins")
Fairly uncommon

Reserved for special ICs that demand the very
best performance or the very smallest
size/power

7.2

k

p

s

w

BeltWarn

IC

Custom
layout

Fab
months

a

2

5

Manufactured IC Technologies – Gate Array ASIC

(2) Semicustom IC
"Application-specific IC" (ASIC)
(a) Gate array or (b) standard
cell

(2a) Gate array
Series of gates already layed out
on chip
We just wire them together

Using CAD tools
Vs. full-custom

Cheaper and quicker to design
But worse performance, size,
power

Very popular

k

p

s

w

BeltWarn

w

Fab
weeks

(just wiring)

(a)

IC
(d)

k
p

s

(c)

(b)

a

6

Manufactured IC Technologies – Gate Array ASIC

(2a) Gate array
Example: Mapping a half-adder
to a gate array

Gate array

s

coa
b

co = ab
s = a'b + ab'

a'b ab'

a

Half-adder equations:

ab

7

Manufactured IC Technologies – Standard Cell ASIC

(2) Semicustom IC
"Application-specific IC" (ASIC)
(a) Gate array or (b) standard
cell

(2b) Standard cell
Pre-layed-out "cells" exist in
library, not on chip
Designer instantiates cells into
pre-defined rows, and connects
Vs. gate array

Better performance/power/size
A bit harder to design

Vs. full custom
Not as good of circuit, but still
far easier to design

w

k

p

s

w

BeltWarn

k
p
s

Fab
1-3 months

(cells and wiring)

(a)

IC
(d) (c)

(b) Cell library

cell row

cell row

cell row

a

8

Manufactured IC Technologies – Standard Cell ASIC

(2b) Standard cell
Example: Mapping a half-adder
to standard cells

s
coa

b

co = ab
s = a'b + ab'

ab a'b

ab'

cell row

cell row

cell row

Gate array

s

coa
b a'b ab'ab

Notice fewer gates and shorter wires
for standard cells versus gate array,

but at cost of more design effort

a

a

3

9

Programmable IC Technology – FPGA
7.3

Manufactured IC technologies require weeks to
months to fabricate

And have large (hundred thousand to million dollar)
initial costs

Programmable ICs are pre-manufactured
Can implement circuit today
Just download bits into device
Slower/bigger/more-power than manufactured ICs

But get it today, and no fabrication costs

Popular programmable IC – FPGA
"Field-programmable gate array"

Developed late 1980s
Though no "gate array" inside

Named when gate arrays were very popular in the 1980s
Programmable in seconds

10

FPGA Internals: Lookup Tables (LUTs)

Basic idea: Memory can implement combinational logic
e.g., 2-address memory can implement 2-input logic
1-bit wide memory – 1 function; 2-bits wide – 2 functions

Such memory in FPGA known as Lookup Table (LUT)

(b)(a) (d)

F = x'y' + xy
G = xy'

x
0
0
1
1

y
0
1
0
1

F
1
0
0
1

G
0
0
1
0

F = x'y' + xy

x
0
0
1
1

y
0
1
0
1

F
1
0
0
1

4x1 Mem.

0
1
2
3

rd

a1
a0

1

y
x

D

F

4x1 Mem.

1
0
0
1

0
1
2
3

rd

a1
a0

1

D

(c)

1
0
0
1

y=0

x=0

F=1

4x2 Mem.

10
00
01
10

0
1
2
3

rd

a1
a0

1

x
y D1 D0

F G
(e)

a a a a

11

FPGA Internals: Lookup Tables (LUTs)

Example: Seat-belt warning
light (again)

k

p

s

w

BeltWarn

(a)

(b)

k
0
0
0
0
1
1
1
1

p
0
0
1
1
0
0
1
1

s
0
1
0
1
0
1
0
1

w
0
0
0
0
0
0
1
0

Programming
(seconds)

Fab
1-3 months

a

a

(c)

8x1 Mem.
0
0
0
0
0
0
1
0
D

w

IC

0
1
2
3
4
5
6
7

a2
a1
a0

k
p
s

12

FPGA Internals: Lookup Tables (LUTs)

Lookup tables become inefficient for more inputs
3 inputs only 8 words
8 inputs 256 words; 16 inputs 65,536 words!

FPGAs thus have numerous small (3, 4, 5, or even 6-input) LUTs
If circuit has more inputs, must partition circuit among LUTs
Example: Extended seat-belt warning light system:

5-input circuit, but 3-
input LUTs available

Map to 3-input LUTs

k
p

s

t

d

w

BeltWarn

(a)

Partition circuit into
3-input sub-circuits

k
p

s

t

d

x w

BeltWarn

(b)

3 inputs
1 output
x=kps'

3 inputs
1 output
w=x+t+d

a a

Sub-circuits have only 3-inputs each

8x1 Mem.
0
0
0
0
0
0
1
0
D

0
1
2
3
4
5
6
7

a2
a1
a0

k
p
s

kps'

x

d
t

(c)

8x1 Mem.
0
1
1
1
1
1
1
1
D

w

0
1
2
3
4
5
6
7

a2
a1
a0x+t+d

4

13

FPGA Internals: Lookup Tables (LUTs)

Partitioning among smaller LUTs is more size efficient
Example: 9-input circuit

a

c
b

a

c
b

d

f
g

F

i

e

h

d

f
e

g

i
h

3x1

3x1 3x1

3x1

F

(a) (b) (c)

512x1 Mem.

8x1 Mem.

Original 9-input circuit Partitioned among
3x1 LUTs

Requires only 4
3-input LUTs

(8x1 memories) –
much smaller than

a 9-input LUT
(512x1 memory)

14

8x2 Mem.

D0D1

0

3
4
5
6
7

a2
a1
a0

a
b
c

(c)

(a)

(b)

8x2 Mem.

D0D1

0
1
2
3
4
5

a2
a1
a0

a

c
b

a

c
b

d

d

e

e

F

F

t3

3

1

1
2

2

FPGA Internals: Lookup Tables (LUTs)

LUT typically has 2 (or more) outputs, not just one
Example: Partitioning a circuit among 3-input 2-output lookup tables

00
00
00
00
00
00
00
01

First column unused;
second column

implements AND

Fe
d

00
10
00
10
00
10
10
10

t

Second column unused;
first column implements

AND/OR sub-circuit

(Note: decomposed one 4-
input AND input two
smaller ANDs to enable
partitioning into 3-input
sub-circuits)

a

a

1
2

6
7

15

FPGA Internals: Lookup Tables (LUTs)

Example: Mapping a 2x4 decoder to 3-input 2-output LUTs

8x2 Mem.
10
01
00
00
00
00
00
00
D0D1

0
1
2
3
4
5
6
7

a2
a1
a0

i1 i0

(b)(a)

8x2 Mem.
00
00
10
01
00
00
00
00
D0D1

d1d0 d3d2

0
1
2
3
4
5
6
7

a2
a1
a0

0
i1
i0

0

d0

d1

d2

d3

Su
b-

cir
cu

it
ha

s 2
 in

pu
ts,

 2
 o

ut
pu

ts

Sub
-ci

rcu
it h

as
2

inp
uts

, 2
 ou

tpu
ts

a a

16

8x2 Mem.
00
00
00
00
00
00
00
00

D0D1

0
1
2
3
4
5
6
7

a2
a1
a0

P1
P0

P6
P7

P8
P9

P2
P3

P5
P4

(a)

8x2 Mem.
00
00
00
00
00
00
00
00
D0D1

0
1
2
3
4
5
6
7

a2
a1
a0m0

m1

o0
o1

m2
m3

Switch
matrix

FPGA (partial)

FPGA Internals: Switch Matrices

Previous slides had hardwired connections between LUTs
Instead, want to program the connections too
Use switch matrices (also known as programmable interconnect)

Simple mux-based version – each output can be set to any of the four
inputs just by programming its 2-bit configuration memory

(b)

m0
o0

o1

i0
s0

d

s1

i1
i2
i3

m1
m2
m3

2-bit
memory

2-bit
memory

Switch matrix

4x1
mux

i0
s0

d

s1

i1
i2
i3

4x1
mux

aa

5

17

8x2 Mem.
10
01
00
00
00
00
00
00

D0D1

0
1
2
3
4
5
6
7

a2
a1
a0

0
0

d3

d2

d1
d0

i1
i0

i0
i1

(a)

8x2 Mem.
00
00
10
01
00
00
00
00
D0D1

0
1
2
3
4
5
6
7

a2
a1
a0m0

m1

o0
o1

m2
m3

Switch
matrix

FPGA (partial)
10

11

10
11

FPGA Internals: Switch Matrices

Mapping a 2x4 decoder onto an FPGA with a switch matrix

(b)

m0
o0

o1

i0
s0

d

s1

i1
i2
i3

m1
m2
m3

Switch matrix

4x1
mux

i0
s0

d

s1

i1
i2
i3

4x1
mux

These bits establish the desired connections

a

18

FPGA Internals: Switch Matrices

Mapping the extended seatbelt warning light onto an
FPGA with a switch matrix

Recall earlier example (let's ignore d input for simplicity)

8x2 Mem.
00
00
00
00
00
00
01
00

D0D1

0
1
2
3
4
5
6
7

a2
a1
a0

k
0

w
p
s

0
t

(a) (b)

8x2 Mem.
00
01
01
01
00
00
00
00
D0D1

0
1
2
3
4
5
6
7

a2
a1
a0m0

m1

o0
o1

m2

m0
o0

o1

i0
s0

d

s1

i1
i2
i3

m1
m2
m3

m3
Switch
matrix

FPGA (partial)
00

10

Switch matrix

4x1
mux

i0
s0

d

s1

i1
i2
i3

4x1
mux

00
10

k
p

s
t
d

x w

BeltWarn

a

x

19

FPGA Internals: Configurable Logic Blocks (CLBs)

LUTs can only
implement
combinational logic
Need flip-flops to
implement sequential
logic
Add flip-flop to each
LUT output

Configurable Logic
Block (CLB)

LUT + flip-flops

Can program CLB
outputs to come
from flip-flops or
from LUTs directly

8x2 Mem.
00
00
00
00
00
00
00
00

D0D1

0
1
2
3
4
5
6
7

a2
a1
a0

P1
P0

P2
P3

P5
P4

8x2 Mem.
00
00
00
00
00
00
00
00

D0D1

0
1
2
3
4
5
6
7

a2
a1
a0m0

m1

o0
o1

m2
m3

Switch
matrix

FPGA

00
00

CLB CLB

P6
P7
P8
P9

flip-flop
CLB output

00 2x12x1 00 2x12x1

1-bit
CLB

output
configuration

memory

1 0 1 0 1 0 1 0

a

20

FPGA Internals: Sequential Circuit Example using CLBs

8x2 Mem.
11
10
01
00
00
00
00
00

D0D1

0
1
2
3
4
5
6
7

a2
a1
a0

0
0
a
b

d
c

8x2 Mem.
00
01
10
11
00
00
00
00

D0D1

0
1
2
3
4
5
6
7

a2
a1
a0m0

m1

o0
o1

m2
m3

Switch
matrix

FPGA

10
11

11 2 x12 x1 2 x12 x1

CLB CLB

z
y
x
w

11

a b c d

w x y
(a)

(b)

(c)

z

a2
0
0
0
0
0

a1
a
0
0
1
1

a0
b
0
1
0
1

D1
w=a'

1
1
0
0

D0
x=b'

1
0
1
0

Left lookup table

below unused

1 0 1 0 1 0 1 0

a

6

21

FPGA Internals: Overall Architecture

Consists of hundreds or thousands of CLBs and switch
matrices (SMs) arranged in regular pattern on a chip

CLB

SM SM

SM SM

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

Represents channel with
tens of wires

Connections for just one
CLB shown, but all
CLBs are obviously

connected to channels

22

FPGA Internals: Programming an FPGA

All configuration
memory bits are
connected as
one big shift
register

Known as scan
chain

Shift in "bit file"
of desired circuit

8x2 Mem.
11
10
01
01
00
00
00
00

D0D1

0
1
2
3
4
5
6
7

a2
a1
a0

0
0

Pin

Pclk

a
b

d
c

Pin

Pclk

8x2 Mem.
01
00
11
10
00
00
00
00

D0D1

0
1
2
3
4
5
6
7

a2
a1
a0m0

m1

o0
o1

m2
m3

Switch
matrix

FPGA

10
11

11 2x12 x1 11 2 x12 x1

CLB CLB

z
y
x
w

(c)

(b)

(a)

Conceptual view of configuration bit scan chain
is that of a 40-bit shift register

Bit file contents for desired circuit: 1101011000000000111101010011010000000011

This isn't wrong. Although the bits appear as "10" above, note that the scan
chain passes through those bits from right to left – so "01" is correct here.

a

23

Other Technologies

Simple Programmable Logic
Devices (SPLDs)

Developed 1970s (thus, pre-dates
FPGAs)
Prefabricated IC with large AND-OR
structure
Connections can be "programmed"
to create custom circuit

Circuit shown can implement any 3-
input function of up to 3 terms

e.g., F = abc + a'c'

O1

PLD IC

I3I2I1

programmable nodes

24

Programmable Nodes in an SPLD

Fuse based – "blown" fuse removes
connection
Memory based – 1 creates connection

1
mem

Fuse

"unblown" fuse

0
mem

"blown" fuse

programmable node

(a)

(b)

O1

PLD IC

I3I2I1

programmable nodes

Fuse based

Memory based

7

25

PLD Drawings and PLD Implementation Example

Common way of drawing PLD
connections:

Uses one wire to represent all
inputs of an AND
Uses "x" to represent connection

Crossing wires are not connected
unless "x" is present

• Example: Seat belt warning
light using SPLD

k

p

s

w

BeltWarn

Two ways to generate a 0 term

O1

PLD IC

I3I2I1

××

wired AND

I3∗I2'

××

×× ×× ××

×× ×

w

PLD IC

spk

kps'

0

0

26

More on PLDs

Originally (1970s) known as Programmable Logic Array – PLA
Had programmable AND and OR arrays

AMD created "Programmable Array Logic" – "PAL" (trademark)

Only AND array was programmable (fuse based)

Lattice Semiconductor Corp. created "Generic Array Logic – "GAL" (trademark)

Memory based

As IC capacities increased, companies put multiple PLD structures on one chip,
interconnecting them

Become known as Complex PLDs (CPLD), and older PLDs became known as Simple
PLDs (SPLD)

GENERALLY SPEAKING, difference of SPLDs vs. CPLDs vs. FPGAs:
SPLD: tens to hundreds of gates, and usually non-volatile (saves bits without power)
CPLD: thousands of gates, and usually non-volatile
FPGA: tens of thousands of gates and more, and usually volatile (but no reason why
couldn't be non-volatile)

27

Technology Comparisons

Full-custom
Standard cell (semicustom)

Gate array (semicustom)

FPGA
PLD

reprogrammable

Easier design More optimized

Faster performance
Higher density
Lower power
Larger chip capacity

Quicker availability
Lower design cost

re
pr

og
ra

m
m

ab
le

7.5

28

Technology Comparisons

reprogrammable

PLD FPGA Gate
array

Standard
cell

Full-custom

(3)(4)

(2) (1)

Easier design

More optimized
Custom

processor

Programmable
processor

(1): Custom processor in full-custom IC
Highly optimized

(2): Custom processor in FPGA
Parallelized circuit, slower IC
technology but programmable

IC technologies

Pr
oc

es
so

r v
ar

ie
tie

s
(3): Programmable processor in standard
cell IC

Program runs (mostly)
sequentially on moderate-costing IC

(4): Programmable processor in FPGA
Not only can processor be
programmed, but FPGA can be
programmed to implement multiple
processors/coprocessors

