ECE 274 Digital Logic - Fall 2008

Optimization and Tradeoffs
Carry-Lookahead Adders
Digital Design 6.4
tre Unvessiry or
ARIZONA.
tucon Anzona

Digital Design

Chapter 6:

Optimization and Tradeoffs

Slides to accompany yhe textoook Digital Design, First Edition,
by Frank Vahiod, oonh Wivey and Sons Pulishisers, 2007.
hthp//www ddvahid com
http://www.ddvahid.com

Copyright © 2007 Frank Vahid

Carry-Lookahead Adder

Faster Adder

- Built carry-ripple adder in Ch 4
 4-bit adder B: b3 b2 b1 b0

$$
\begin{array}{llll}
\text { cout } & \text { s3 } & \text { s2 } & \text { s1 }
\end{array}
$$

- Similar to adding by hand, column by column
- Con: Slow
- Output is not correct until the carries have 4 -bit carry-ripple adder has $4 * 2=8$ gate delays
- Pro: Small

Carry-Lookahead Adder
Faster Adder

Faster adder - Use two-level combinational logic design process

- Recall that 4-bit two-level adder was big
- Pro: Fast

- 2 gate delays

\square Con: Large

- Truth table would have $2^{(4+4)}=256$ rows
- Plot shows 4-bit adder would use about 500 gates
- Is there a compromise design?
- Between 2 and 8 gate delays
\square Between 20 and 500 gates

Two-level: AND level followed by ORs

Carry-Lookahead Adder

Faster Adder - (Bad) Attempt at "Lookahead"

- Idea

- Modify carry-ripple adder - For a stage's carry-in, don't wait for carry to ripple, but rather directly compute from inputs of earlier stages

Called "lookahead" because current stage "looks ahead" at previous stages rather than waiting for carry to ripple to current stage

Notice - no rippling of carry

Carry-Lookahead Adder

Faster Adder - (Bad) Attempt at "Lookahead"

- Carry lookahead logic function of external inputs - No waiting for ripple
- Problem

ㅁ Equations get too big

- Not efficient
- Need a better form of lookahead

$c 2=b 1 b o c 0+b 1 a 0 c 0+b 1 a 0 b 0+a 1 b o c 0+a 1 a 0 c 0+a 1 a 0 b 0+a 1 b$

Carry-Lookahead Adder
Faster Adder - (Bad) Attempt at "Lookahead"

- Want each stage's carry-in bit to be function of external inputs only (a's, b's, or $c 0$)

- Recall full-adder equations:

Stage 2: $\mathrm{c} 2=\mathrm{coz}$
tage 0: Carry-in

$$
\mathrm{c} 01=
$$

$c 2=b 1(b 0 c 0+a 0 c 0+a 0 b 0)+a 1(b 0 c 0+a 0 c 0+a 0 b 0)+a 1 b 1$
$\mathrm{c} 2=\mathrm{b} 1 \mathrm{~b} 0 \mathrm{c} 0+\mathrm{b} 1 \mathrm{a} 0 \mathrm{c} 0+\mathrm{b} 1 \mathrm{a} 0 \mathrm{~b} 0+\mathrm{a} 1 \mathrm{~b} 0 \mathrm{c} 0+\mathrm{a} 1 \mathrm{a} 0 \mathrm{c} 0+\mathrm{a} 1 \mathrm{a} 0 \mathrm{~b} 0+\mathrm{a} 1 \mathrm{~b} 1$ Continue for c 3

Carry-Lookahead Adder
 Better Form of Lookahead

O Have each stage compute two terms

- Propagate. $\mathrm{P}=\mathrm{a}$ xor b

ㅁ Generate: G = ab
○ Compute lookahead from P and G terms, not from external inputs
\square Why $P \& G$? Because the logic comes out much simple

- Very clever finding; not particularly obvious though
- Why those names?
bare 1, carry-out will be 1-"generate" a carry-out of 1 in this case P. If only one of a or b is 1 , then carry-out will equal the carry-in - propagate the carry-in to the carry-out in this case

carries: c4 c3 c2 c1 co ${ }^{\mathrm{cin}}$ B: \quad b3 b2 b1 b0 A: +\begin{tabular}{rl}

+ a3 a2 an an

\hline
\end{tabular} cout s3 s2 s1 s0;

(a)
$\begin{aligned} \text { if } \mathrm{aObO} & =1 \\ \text { then } \mathrm{c} 1 & =1\end{aligned}$ (call this G:Generate) (call this P: Propagate)

Carry-Lookahead Adder

Better Form of Lookahead

With $P \& G$, the carry lookahead After plugging in:
equations are much simpler
\square Equations before plugging in

- $\mathrm{Cl}=\mathrm{GO}+\mathrm{POCO}$
- $\mathrm{c} 2=\mathrm{G} 1+\mathrm{P} 1 \mathrm{c} 1$
- $\mathrm{c} 3=\mathrm{G} 2+\mathrm{P} 2 \mathrm{c} 2$
- cout $=$ G3 + P3c3
$\mathrm{c} 1=\mathrm{GO}+\mathrm{POcO}$
$\mathrm{c} 2=\mathrm{G} 1+\mathrm{P} 1 \mathrm{c} 1=\mathrm{G} 1+\mathrm{P} 1(\mathrm{G} 0+\mathrm{P} 0 \mathrm{c} 0)$ $\mathrm{c} 2=\mathrm{G} 1+\mathrm{P} 1 \mathrm{G} 0+\mathrm{P} 1 \mathrm{P} 0 \mathrm{cO}$ $\mathrm{c} 3=\mathrm{G} 2+\mathrm{P} 2 \mathrm{c} 2=\mathrm{G} 2+\mathrm{P} 2(\mathrm{G} 1+\mathrm{P} 1 \mathrm{G} 0+\mathrm{P} 1 \mathrm{P} 0 \mathrm{c} 0)$ $\mathrm{c} 3=\mathrm{G} 2+$ P2G1 + P2P1G0 + P2P1P0c0 cout $=\mathrm{G} 3+$ P3G2 + P3P2G1 + P3P2P1G0 -
Much simpler than the "bad" lookahead

Carry-Lookahead Adder

Carry-Lookahead Adder -- High-Level View

- Fast -- only 4 gate delays
- Each stage has SPG block with 2 gate levels
- Carry-lookahead logic quickly computes the carry from the propagate and generate bits using 2 gate levels inside
- Reasonable number of gates -- 4-bit adder has only 26 gates
- 4-bit adder comparison (gate delays, gates)
- Carry-ripple: $(8,20)$
- Two-level: $(2,500)$
- CLA: $(4,26)$
o Nice compromise

Carry-Lookahead Adder
Carry-Lookahead Adder - 32-bit?

O Problem: Gates get bigger in each stage

- 4th stage has 5 -input gates
- 32nd stage would have 33 -input gates

Too many inputs for one gate

- Would require building from smaller gates, meaning more levels (slower), more gates (bigger)

One solution: Connect 4-bit CLA adders in ripple manner

ㅁ But slow ($4+4+4+4$ gate delays)

Optimizations and Tradeoffs
Adder Tradeoffs

