ECE 274 Digital Logic - Fall 2008

Optimization and Tradeoffs
State Encodings, Moore vs. Mealy FSMs
Digital Design 6.3
the Unvesstro: ARIZONA. tucson Anzona

Digital Design

Chapter 6:

Optimization and Tradeoffs

```
Slides to accompany the textbook Digital Design, First Edition,
    \ases I accompany the extbook Digital Design, First Edition,
```

 id, John Wiley and Sons Put
 hitp://www.ddvahid.com

Copyright © 2007 Frank Vahid

Sequential Optimizations and Tradeoffs

 State Encoding- Encoding: Assigning a unique bit representation to each state
o Different encodings may optimize size, or tradeoff size and performance
- Consider 3-Cycle Laser Timer..
- Example 3.7's encoding: $\mathbf{1 5}$ gate inputs
- Try alternative encoding
- $\mathrm{x}=\mathrm{s} 1+\mathrm{s} 0$
- $\mathrm{n} 1=\mathrm{so}$
- $\mathrm{nO}=\mathrm{sl} 1^{\prime} \mathrm{b}+\mathrm{s} 1^{\prime} \mathrm{s} 0$
- Only 8 gate inputs

Inputs: b; Outputs: x

	Inputs		Output		
	51	so b	\times	n!	n0
off	0	0	0	0	0
	0	1	0	0	1
OnI	0	0	1	1	\square^{1}
	0	11	1	1	\sim^{-1}
On2	1	\rightarrow^{110}	1	1	± 0
	1	\rightarrow^{11}	1	1	± 0
On3	1	$\pm{ }^{0} 0$	1	0	0
	1	$\pm{ }^{1}$	1	0	0

Sequential Optimizations and Tradeoffs
State Encoding: One-Hot Encoding

- One-hot encoding

- One bit per state - a bit being corresponds to a particular state
- Alternative to minimum bit-width encoding in previous example
For A, B, C, D: A: 0001, B: 0010, C 0100, D: 1000
- Example: FSM that outputs 0, 1, 1, 1
- Equations if one-hot encoding
$\mathrm{n3}=\mathrm{s2} ; \mathrm{n2}=\mathrm{sl} ; \mathrm{n} 1=\mathrm{s} 0 ; \mathrm{x}=\mathrm{s} 3$
$+\mathrm{s} 2+\mathrm{sl}$
Fewer gates and only one level of
logic - less delay than two levels, faster clock frequency

- binary	
4 one-hot	
$2-1$	
	lay (gate-

Sequential Optimizations and Tradeoffs

One-Hot Encoding Example: Three-Cycles-High Laser Timer

- Four states - Use four-bit one-hot encoding
- State table leads to equations.
- $\mathrm{x}=\mathrm{s} 3+\mathrm{s} 2+\mathrm{s} 1$
$\begin{aligned} \circ \mathrm{n} 3 & =\mathrm{s} 2 \\ \mathrm{n} 2 & =\mathrm{s} 1\end{aligned}$
$\begin{aligned} \circ \mathrm{n} 2 & =\mathrm{s} 1 \\ \circ \mathrm{n} 1 & =\mathrm{sO}^{*} \mathrm{~b}\end{aligned}$
- $\mathrm{nO}=\mathrm{s} 0 * \mathrm{~b}^{\prime}+\mathrm{s} 3$
- Smaller
- $3+0+0+2+(2+2)=\mathbf{9}$ gate inputs
- Earlier binary encoding (Ch 3): 15 gate inputs
- Faster
- Critical path: $\mathrm{no}=\mathrm{s} 0^{*} \mathrm{~b}^{\prime}+\mathrm{s3}$
- Previously: $\mathrm{n0}=\mathrm{s} 1^{\prime} \mathrm{so} \mathbf{O}^{\prime} \mathrm{b}+\mathrm{sl} \mathrm{so}^{\prime}$
- 2-input AND slightly faster than 3input AND

Sequential Optimizations and Tradeoffs State Encoding: Output Encoding

Output encoding: Encoding

method where the state
encoding is same as the output values

- Possible if enough outputs, all states with unique output values

Sequential Optimizations and Tradeoffs

Moore vs. Mealy FSMs: Mealy FSMs May Have Fewer States

Q. Which is Moore,
and which is Mealy?

- A: Mealy on left,

Moore on right

- Mealy outputs on arcs, meaning outputs are function of state AND
INPUTS
- Moore outputs in states, meaning outputs are function of state only

10

Sequential Optimizations and Tradeoffs
 Moore vs. Mealy Tradeoff

- Mealy outputs change mid-cycle if input changes
- Note earlier soda dispenser example
- Mealy had fewer states, but output d not 1 for full cycle
- Represents a type of tradeoff

$$
\begin{aligned}
& \text { Inputs: enough (bit) } \\
& \text { Outputs } \mathrm{d} \text {, clear (bit) }
\end{aligned}
$$

Inputs: enough (bit)
Outputs: d, clear (bit)

Moore

$$
\text { Outputs: clear } \longrightarrow \square
$$

(a)
(b)

```
Sequential Optimizations and Tradeoffs
Implementing a Mealy FSM
- Convert to state table
- Derive equations for each Inpus: enough (bit) output
- Key difference from Moore: External outputs ( \(d\), clear) may have different value in same state, depending on input values
```


Sequential Optimizations and Tradeoffs
Mealy and Moore can be combined

- Final note on Mealy/Moore
- May be combined in same FSM

$\xrightarrow{\text { Inputs: } \mathrm{b} \text {; Outputs: } \mathrm{s} 1, \mathrm{sO}, \mathrm{p}}$	
\rightarrow Time ${ }_{\text {s } 150}=00$	
$T_{b / p=1}^{s 1 s 0=00}$	
${ }^{\circ} \mathrm{b} / \mathrm{p} \mathrm{p}$	
Combin	
$\mathrm{b}^{\prime} \mathrm{p}=0$	Moore/Mealy
s1s0=10	FSM for beeping
b/p=1	wristwatch
	example
${ }_{b / p=1} 150=11$	

