CPT Digital Logic – Fall 2008 Optimization and Tradeoffs State Encodings, Moore vs. Mealy FSMs Digital Design 6.3

- Consider 3-Cycle Laser Timer...
 Example 3.7's encoding: 15 gate inputs
 - Try alternative encoding
 - x = s1 + s0
 - o n1 = s0
 - 0 n0 = s1'b + s1's0
 - o Only 8 gate inputs

Sequential Optimizations and Tradeoffs One-Hot Encoding Example: Three-Cycles-High Laser Timer

- Four states Use four-bit one-hot encoding
 - State table leads to equations:
 - 0 x = s3 + s2 + s1
 - 0 n3 = s2
 - o n2 = s1
 - o n1 = s0*b0 n0 = s0*b' + s3

 - Smaller
 - 0.3+0+0+2+(2+2) = 9 gate inputs
 - o Earlier binary encoding (Ch 3): 15 gate inputs
 - - o Critical path: n0 = s0*b' + s3
 - \circ Previously: n0 = s1's0'b + s1s0'
 - 2-input AND slightly faster than 3input AND

	Inputs						Outputs				
	53	52	s1	s0	b	Х	n3	n2	nl	n0	
Off	0.	0	.0	1.	0	0	0	0	0.	1	
	0	0	0	1	1	0	0	0	1	0	
On I	0	0	1	0	0	1	0	1	0	0	
	0	0	1	0	1	1	0	1	0	0	
On2	0	1	0	0	0	1	1	0	0	0	
	0	1	0	0	1	1	1	0	0	0	
On3	1	0	0	0	0	1	0	.0	0	1	
	1	0	.0	0	1	1	0	0	0	1	

Sequential Optimizations and Tradeoffs State Encoding: Output Encoding o *Output encoding*: Encoding Use the output values as the state encoding method where the state encoding is same as the output Inputs: none; Outputs: x,y values A 00 D 11 Possible if enough outputs, all states with unique output values B 01

Sequential Optimizations and Tradeoffs Implementing a Mealy FSM

- Straightforward
 - Convert to state table
 - Derive equations for each output
 - Key difference from Moore: External outputs (d, clear) may have different value in same state, depending on input values

	1	Inputs	Outputs			
	50	enough	n0	d	clear	
Init	0	0 1	1	0	1	
Wait	1	0 1	1 0	0	0	

Sequential Optimizations and Tradeoffs Mealy and Moore can be combined

- o Final note on Mealy/Moore
 - May be combined in same FSM

