ECE 274 Digital Logic - Fall 2008

Optimization and Tradeoffs
Two-Level Minimization, Karnaugh Maps, Exact and Heuristic Minimization, Multi-level Minimization

$$
\text { Digital Design } 6.1-6.2
$$ tucson Anzona

Optimization and Tradeoffs
 Introduction

- We now know how to build digital circuits - How can we build better circuits?
- Let's consider two important design criteria
- Delay - the time from inputs changing to new correct stable output
- Size - the number of transistors
- For quick estimation, assume
- Every gate has delay of "1
- Every gate has delay of "1 gate-delay"
- Every gate input requires 2 transistors
- I gnore inverters

Digital Design

Chapter 6:

Optimization and Tradeoffs

```
    Slides to accompany the textook Digital Design, First Edition,
```

 han://www.ddvahid.com

Copyright © 2007 Frank Vahid

Optimization and Tradeoffs

Introduction

- We obviously prefer optimizations, but often must accept tradeoffs
- You can't build a car that is the most comfortable, and has the best fuel efficiency, and is the fastest - you have to give up something to gain other things.

Optimization and Tradeoffs

6.2

Combinational Logic Optimization and Tradeoffs

- Two-level size optimization using algebraic methods
- Goal: circuit with only two levels (ORed AND gates), with minimum transistors - Though transistors getting cheaper (Moore's Law), they still cost something - Define problem algebraically
- Sum-of-products yields two levels - $\mathrm{F}=\mathrm{abc}+\mathrm{abc}$ is sum-of-products; $\mathrm{G}=$ $w(x y+z)$ is not.
- Transform sum-of-products equation to have fewest literals and terms
- Each literal and term translates to a gate input, each of which translates to about 2 transistors (see Ch. 2)
- Ignore inverters for simplicity

Optimization and Tradeoffs
 Algebraic Two-Level Size Minimization

- Previous example showed common algebraic minimization method
- (Multiply out to sum-of-products, then)
- Apply following as much possible
$\circ a b+a b^{\prime}=a\left(b+b^{\prime}\right)=a * 1=a$
- "Combining terms to eliminate a variable"
- (Formally called the "Uniting theorem")
- Duplicating a term sometimes helps
- Note that doesn't change function $\square c+d=c+d+d=c+d+d+d+d$
- Sometimes after combining terms, can combine resulting terms
$F=x y z+x y z^{\prime}+x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z$
$F=x y\left(z+z^{\prime}\right)+x^{\prime} y^{\prime}\left(z+z^{\prime}\right)$
$F=x y^{*} 1+x^{\prime} y^{\prime *} y^{1}$
$F=x y+x^{\prime} y^{\prime}$
$\longrightarrow \mathrm{F}=x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z+x^{\prime} y z$
$F=x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z+x^{\prime} y^{\prime} z+x^{\prime} y z$
$F=x^{\prime} y^{\prime}\left(z+z^{\prime}\right)+x^{\prime} z\left(y^{\prime}+y\right)$
$F=x^{\prime} y^{\prime}\left(z+z^{\prime}\right)+x^{\prime} z\left(y^{\prime}+y\right)$
$F=x^{\prime} y^{\prime}+x^{\prime} z$
$G=x y^{\prime} z^{\prime}+x y^{\prime} z+x y z+x y z^{\prime}$
$\mathrm{G}=x y^{\prime}\left(\mathrm{z}^{\prime}+z\right)+x y\left(z+z^{\prime}\right)$
$\mathrm{G}=\mathrm{xy}{ }^{\prime}+\mathrm{xy} \quad$ (now do again)
$\mathrm{G}=\mathrm{x}\left(\mathrm{y}^{\prime}+\mathrm{y}\right)$
$\mathrm{G}=\mathrm{x}$

Optimization and Tradeoffs

Karnaugh Maps for Two-Level Size Minimization

- Easy to miss "seeing" possible opportunities to \quad x \quad yz Kombine terms

Mintine terns
- Minterms differing in one variable are adjacent in the map

Treat left \& right as adjacent too
Can clearly see opportunities to combine terms F
look for adjacent 1s
o For F , clearly two opportunities

- Top left circle is shorthand for $x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z=x^{\prime} y^{\prime}\left(z^{\prime}+z\right)=$ $x^{\prime} y^{\prime}(1)=x^{\prime} y^{\prime}$
Draw circle, write term that has all the literals except the one that changes in the circle
- Circle $x y, x=1 \& y=1$ in both cells of the circle, but z
changes $(z=1$ in
- Minimized function: OR the final terms

Optimization and Tradeoffs
 Karnaugh Maps for Two-Level Size Minimization

- Four adjacent 1s means two variables can be eliminated
- Makes intuitive sense - those two variables appear in all combinations, so one must be true
w one big circle - shorthand for the algebraic transformations above
$G=x\left(y^{\prime} z^{\prime}+y^{\prime} z+y z+y z^{\prime}\right)$ (must be true)
$G=x\left(y^{\prime}\left(z^{\prime}+z\right)+y\left(z+z^{\prime}\right)\right)$
$G=x\left(y^{\prime}+y\right)$
$G=x$
G yz

Draw the biggest Draw the biggest
circle possible, or
you'll have more you'll have more term than really needed

Optimization and Tradeoffs

Karnaugh Maps for Two-Level Size Minimization

- Four adjacent cells can be in shape of a \quad H
$H=x^{\prime} y^{\prime} z+x^{\prime} y z+x y^{\prime} z+x y z$ square
OK to cover a 1 twic

$$
\begin{aligned}
& \text { - Just like duplicating a term } \\
& \text { م Remember, } c+d=c+d+d
\end{aligned}
$$

No need to cover 1s more than once
\qquad

- Yields extra terms - not minimized

$$
\begin{aligned}
& \times \int_{0}^{y z} 00 \quad 01 / r^{y / z} 11 \quad 10 \\
& \text { The two circles are shorthand for: }
\end{aligned}
$$

$\begin{aligned} & \mathrm{I}=\left(x^{\prime} y^{\prime} z+x y^{\prime} z\right)+\left(x y^{\prime} z^{\prime}+x y^{\prime} z+x y z+x y z^{\prime}\right) \\ & \quad=\left(y^{\prime} z\right)+(x)\end{aligned}$
$1=\left(y^{\prime} z\right)+(x)$

Optimization and Tradeoffs
 Kamaugh Maps for Two-Level Size Minimization

- Circles can cross left/right sides
- Remember, edges are adjacent - Minterms differ in one variable only
o Circles must have $1,2,4$, or 8 cells - 3, 5, or 7 not allowed
ㅁ 3/5/7 doesn't correspond to algebraic transformations that combine terms to eliminate a variable
o Circling all the cells is OK
- Function just equals 1

Optimization and Tradeoffs

Karnaugh Maps for Two-Level Size Minimization

- Four-variable K-map follows same principle
- Adjacent cells differ in one variable
- Left/right adjacent
- Top/bottom also adjacent
- 5 and 6 variable maps exist
- But hard to use
- Two-variable maps exist
- But not very useful - easy to do algebraically by hand

$\mathrm{G}=\mathrm{z}$

Optimization and Tradeoffs

Karnaugh Maps for Two-Level Size Minimization

General K-map method

1. Convert the function's equation into sum-of-products form
2. Place 1 s in the appropriate K -map cells for each term
3. Cover all 1 s by drawing the fewest largest circles, with every 1 included at least once; write the corresponding term for each circle
4. OR all the resulting terms to create the minimized function

Example: Minimize:
$G=a+a^{\prime} b^{\prime} c^{\prime}+b^{\star}\left(c^{\prime}+b c\right)$

1. Convert to sum-of-products
$G=a+a^{\prime} b^{\prime} c^{\prime}+b c^{\prime}+b c$
2. Place 1 s in appropriate cells

3. OR terms: $\mathrm{G}=\mathrm{a}+\mathrm{c}$

Optimization and Tradeoffs

Karnaugh Maps for Two-Level Size Minimization

- Minimize:

 a'bd + a'bcd'a'b'cd

1. Convert to sym-of-products: $\sqrt{ } \quad{ }^{\prime} \quad \mathrm{H} \mathrm{cd}$
 $a^{\prime} b d+a^{\prime} b c d^{\prime}$
2. Place 1s in K-map cells
3. Cover 1s
4. OR resulting terms

01

10

Optimization and Tradeoffs

Karnaugh Maps: Don't Care Input Combinations

- Minimize

- $F=\underline{a^{\prime} b c^{\prime}+a b c^{\prime}+a a^{\prime}} \mathbf{c}$
- Given don't cares: a'bc, abc
- Note: Use don't cares with caution
- Must be sure that we really don't care what the function outputs for that

$F=a^{\prime} c+b$ input combination
- If we do care, even the slightest, then it's probably safer to set the output to 0

Optimization and Tradeoffs

Karnaugh Maps: Don't Care Input Combinations

O Example:

\square Switch with 5 positions
\square 3-bit value gives position in binary
o Want circuit that

- Outputs 1 when switch is in position 2, 3, or 4
- Outputs 0 when switch is in position 1 or 5
\square Note that the 3-bit input can \quad yz never output binary 0,6 , or 7
- Treat as don't care input combinations

Optimization and Tradeoffs

Automating Two-Level Logic Size Minimization

- Minimizing by hand

- Is hard for functions with 5 or more variables
- May not yield minimum cover depending on order we choose
- Is error prone

Minimization thus typically done by automated tools

- Exact algorithm: finds optima solution
- Heuristic. finds good solution, but not necessarily optimal

Optimization and Tradeoffs

Basic Concepts Underlying Automated Two-Level Logic Minimization

O Definitions (cont)

- Essential prime implicant: The only prime implicant that covers particular minterm in a function's on-set
- Importance: We must include all essential PIs in a function's cover
- In contrast, some, but not all, nonessential PIs will be included

be expanded
expanded implicant - any expansion would cover 1s not in on-set
- $x^{\prime} y^{\prime} z$, and $x y$, above But not xyz or xyz' - they can

Note: We use K-maps here just ntuitive illustration of concents: intuitive illustration of concepts;
automated tools do not use K-maps.
necessarily largest) circle
Cover: Implicant xy covers minterms xyz and $\mathrm{xyz} \mathbf{z}^{\prime}$

- Expanding a term: removing a variable (like larger K-map circle)
$\circ x y z \rightarrow x y$ is an expansion of $x y z$

O Definitions

- On-set. All minterms that define when $\mathrm{F}=1$
- Off-set: All minterms that define when $F=0$
- Implicant: Any product term (minterm or other) that when 1 causes $\mathrm{F}=1$

Optimization and Tradeoffs

Basic Concepts Underlying Automated Two-Level Logic Minimization

$$
>+2+2+2
$$

$$
2
$$

Optimization and Tradeoffs
 Automated Two-Level Logic Minimization Method

Step Description

1 Determine prime implicants For every minterm in the function's on-set, maximally expand the term (meaning climinate literals from the $(\mathrm{cm}$) such that he term still climinate literals from the tern) such that the term still only covers minterms in K -map). Repeat for each minterm. If don't cares exist, use them to maximally expand minterms into prime implicants (like using X's to create the bigest circles possible for a given 1 in a K -map).

2 Add essential prime implicants Find any minterms covered by only one prime implicant (i.e., by an essential prime to the function's cover implicant). Add those prime implicants to the cover, and mark the minterms covered by those implicants as already covered.

3 Cover remaining minterns with Cover the remaining minterms using the minimal number of remaining prime nonessential prime implicants implicants.

- Steps 1 and 2: Exact
- Step 3: Hard. Checking all possibilities: exact, but computationally expensive. Checking some but not all: heuristic.

Optimization and Tradeoffs

Example of Automated Two-Level Minimization

- 1. Determine all prime implicants
- 2. Add essential PIs to cover
- Italicized 1 s are thus already covered
- Only one uncovered 1 remains
- 3. Cover remaining minterms with nonessential PIs
- Pick among the two possible PIs

Optimization and Tradeoffs

Problem with Methods that Enumerate all Minterms or Compute all Prime

Optimization and Tradeoffs

Solution to Computation Problem
o Too many minterms for functions with many variables

- Function with 32 variables

O Solution

- $2^{32}=4$ billion possible minterms
- Too much compute time/memory
- Too many computations to generate all prime implicants
- Comparing every minterm with every other minterm, for 32 variables, is $(4 \text { billion })^{2}=1$ quadrillion computations
- Functions with many variables could requires days, months, years, or more of computation - unreasonable
\square Don't generate all minterms or prime implicants
- Instead, just take input equation, and try to "iteratively" improve it
- Ex: F = abcdefgh + abcdefgh'+ jklmnop
- Note: 15 variables, may have thousands of minterms
- But can minimize just by combining first two terms:
- $\mathrm{F}=\operatorname{abcdefg}\left(\mathrm{h}+\mathrm{h}^{\prime}\right)+\mathrm{jklmnop}=$ abcdefg +jklmnop

Optimization and Tradeoffs

Two-Level Minimization using Iterative Method

- Method: Randomly apply "expand" operations, see if helps
- Expand: remove a variable from a term
- Like expanding circle size on K -map
- e.g., Expanding x'z to z legal, but
expanding $x^{\prime} z$ to z^{\prime} not legal, in shown function
- After expand, remove other terms covered by newly expanded term
- Keep trying (iterate) until doesn't help

Ex:
F $=$ abcdefgh + abcdefgh'+ jklmnop
$F=$ abcdefg + abcdefgh' + jklmnop
$\mathrm{F}=\mathrm{abcdefg}+\mathrm{jk}$ lmnop

Optimization and Tradeoffs

Multi-Level Logic Optimization - Performance/Size Tradeoffs

- We don't always need the speed of two level logic
\square Multiple levels may yield fewer gates
- Example
$\circ \mathrm{Fl}=\mathrm{ab}+\mathrm{acd}+\mathrm{ace} \rightarrow \quad \mathrm{F} 2=\mathrm{ab}+\mathrm{ac}(\mathrm{d}+\mathrm{e})=\mathrm{a}(\mathrm{b}+\mathrm{c}(\mathrm{d}+\mathrm{e}))$
- General technique: Factor out literals $-x y+x z=x(y+z)$

Optimization and Tradeoffs

Multi-Level Logic Optimization - Performance/Size Tradeoffs
o Use multiple levels to reduce number of transistors for ㅁ $\mathrm{F} 1=\mathrm{abcd}+\mathrm{abcef}$

o Solution

- $\mathrm{F} 2=\mathrm{abcd}+\mathrm{abcef}=\mathrm{abc}(\mathrm{d}+\mathrm{ef})$
\square Has fewer gate inputs, thus fewer transistors

(a)

(c)

Optimization and Tradeoffs

Multi-Level Example: Non-Critical Path

- Critical path: longest delay path to output
- Optimization: reduce size of logic on non-critical paths by using multiple levels

$F 1=(a+b) c+d f g+e f g$
(a)

$\mathrm{F} 2=(\mathrm{a}+\mathrm{b}) \mathrm{c}+\quad(\mathrm{d}+\mathrm{e}) \mathrm{fg}$
(b)

