
1

ECE 274 Digital Logic – Fall 2008

RTL Design – Memories and Hierarchy
Digital Design 5.6 – 5.8

Digital Design

Chapter 5:
RTL Design

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

3

RTL Design
RTL Design Method

4

RTL Design
Memory Components

Register-transfer level design
instantiates datapath components
to create datapath, controlled by a
controller

A few more components are often
used outside the controller and
datapath

MxN memory
M words, N bits wide each

Several varieties of memory, which
we now introduce

5.6

N-bits
wide each

M×N memory

M
 w

or
ds

2

5

RTL Design
Random Access Memory (RAM)

RAM – Readable and writable memory
“Random access memory”

Strange name – Created several decades ago to
contrast with sequentially-accessed storage like
tape drives

Logically same as register file – Memory with
address inputs, data inputs/outputs, and control

RAM usually just one port; register file usually two
or more

RAM vs. register file
RAM typically larger than roughly 512 or 1024
words
RAM typically stores bits using a bit storage
approach that is more efficient than a flip flop
RAM typically implemented on a chip in a square
rather than rectangular shape – keeps longest wires
(hence delay) short

32

10
data

addr

rw

en

1024× 32
RAM

32

4

32

4
W_data

W_addr

W_en

R_data

R_addr

R_en
16×32

register file

Register file from Chpt. 4

RAM block symbol

6

RTL Design
RAM Internal Structure

Similar internal structure as register file
Decoder enables appropriate word based on address inputs
rw controls whether cell is written or read
Let’s see what’s inside each RAM cell

32

10
data

addr

rw

en

1024x32
RAM

addr0
addr1

addr(A-1)

clk
en
rw

addr

Let A = log2M

to all cells

wdata(N-1)

rdata(N-1)

wdata(N-2)

rdata(N-2)

wdata0

rdata0

bit storage
block
(aka “cell”)

word

word

RAM cell

word
enable

word
enable

rw

data cell

data

a0
a1

d0

d1

d(M-1)

a(A-1)

e

AxM
decoder

enable

7

RTL Design
Static RAM (SRAM)

“Static” RAM cell
6 transistors (recall inverter is 2 transistors)

Writing this cell
word enable input comes from decoder
When 0, value d loops around inverters

That loop is where a bit stays stored
When 1, the data bit value enters the loop

data is the bit to be stored in this cell
data’ enters on other side
Example shows a “1” being written into cell

addr0
addr1

addr(A-1)

clk
en
rw

ad
d

r

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A ⋅ M
decoder

word
enable

to all cells

wdata(N-1)

rdata(N-1)

wdata(N-2)

rdata(N-2)

wdata0

rdata0

bit storage
block
(aka cell)

word

,,,,

cell

word
enable

word
enable

rw

data

data

a

SRAM cell
data data’

d’d
cell

0word
enable

1

1

1

0

0

32

10
data

addr

rw

en

1024x32
RAM

SRAM cell
data data’

d

word
enable

data data’

d’d cell

0word
enable

1 0

a

a

8

RTL Design
Static RAM (SRAM)

“Static” RAM cell
Reading this cell

Somewhat trickier
When rw set to read, the RAM logic sets
both data and data’ to 1
The stored bit d will pull either the left line
or the right bit down slightly below 1
“Sense amplifiers” detect which side is
slightly pulled down

The electrical description of SRAM is really
beyond our scope – just general idea here,
mainly to contrast with DRAM...

addr0
addr1

addr(A-1)

clk
en
rw

ad
d

r

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A ⋅ M
decoder

word
enable

to all cells

wdata(N-1)

rdata(N-1)

wdata(N-2)

rdata(N-2)

wdata0

rdata0

bit storage
block
(aka cell)

word

,,,,

cell

word
enable

word
enable

rw

data

data
SRAM cell

32

10
data

addr

rw

en

1024x32
RAM

data data’

d

1

1 1

word
enable

To sense amplifiers

1 0

1 <1
a

3

9

RTL Design
Dynamic RAM (DRAM)

“Dynamic” RAM cell
1 transistor (rather than 6)
Relies on large capacitor to store bit

Write: Transistor conducts, data voltage level
gets stored on top plate of capacitor
Read: Just look at value of d
Problem: Capacitor discharges over time

Must “refresh” regularly, by reading d and then
writing it right back

addr0
addr1

addr(A-1)

clk
en
rw

ad
d

r

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A ⋅ M
decoder

word
enable

to all cells

wdata(N-1)

rdata(N-1)

wdata(N-2)

rdata(N-2)

wdata0

rdata0

bit storage
block
(aka cell)

word

,,,,

cell

word
enable

word
enable

rw

data

data
DRAM cell

32

10
data

addr

rw

en

1024x32
RAM

word
enable

data

cell

(a)

(b)

data

enable

d discharges

d
capacitor
slowly
discharging

10

RTL Design
Comparing Memory Types

Register file
Fastest
But biggest size

SRAM
Fast
More compact than register file

DRAM
Slowest

And refreshing takes time
But very compact

Use register file for small items,
SRAM for large items, and DRAM for
huge items

Note: DRAM’s big capacitor requires
a special chip design process, so
DRAM is often a separate chip

MxN Memory
implemented as a:

register
file

SRAM

DRAM

Size comparison for same
number of bits (not to scale)

11

RTL Design
Reading and Writing a RAM

Writing
Put address on addr lines, data on data lines, set rw=1, en=1

Reading
Set addr and en lines, but put nothing (Z) on data lines, set rw=0
Data will appear on data lines

Don’t forget to obey setup and hold times
In short – keep inputs stable before and after a clock edge

clk

addr

data

rw

en

1 2

9 913

999 Z 500500

3

1 means write

RAM[9]
now equals 500

RAM[13]
now equals 999

(b)

valid

valid

Z 500

access
time

setup
time

hold
time

setup
time

clk

addr

data

rw

12

RTL Design
RAM Example: Digital Sound Recorder

Behavior
Record: Digitize sound, store as series of 4096 12-bit digital values in RAM

We’ll use a 4096x16 RAM (12-bit wide RAM not common)
Play back later
Common behavior in telephone answering machine, toys, voice recorders

To record, processor should read a-to-d, store read values into
successive RAM words

To play, processor should read successive RAM words and enable d-to-a

wire

speaker

microphone

wire
analog-to-

digital
converter

digital-to-
analog

converter
ad_ld da_ld

Rrw RenRa
12

16

processor

ad_buf

da
ta

ad
dr

rw en

4096⋅ 16
RAM

4

13

RTL Design
RAM Example: Digital Sound Recorder

RTL design of processor
Create high-level state
machine
Begin with the record behavior
Keep local register a

Stores current address, ranges
from 0 to 4095 (thus need 12
bits)

Create state machine that
counts from 0 to 4095 using a

For each a
Read analog-to-digital conv.

ad_ld=1, ad_buf=1
Write to RAM at address a

Ra=a, Rrw=1, Ren=1

ad_ld=1
ad_buf=1
Ra=a
Rrw=1
Ren=1

S

a=0

a=a+1

a=4095

a<4095
T

U

Local register: a (12 bits)

analog-to-
digital

converter

digital-to-
analog

converter
ad_ld da_ld

Rw RenRa12

16

processor

ad_buf

4096x16
RAM

a

Record behavior

14

RTL Design
RAM Example: Digital Sound Recorder

Now create play behavior
Use local register a again, create
state machine that counts from
0 to 4095 again

For each a
Read RAM
Write to digital-to-analog conv.

Note: Must write d-to-a one
cycle after reading RAM, when
the read data is available on the
data bus

The record and play state
machines would be parts of a
larger state machine controlled
by signals that determine when
to record or play

a

da_ld=1

ad_buf=0
Ra=a
Rrw=0
Ren=1

V

a=0

a=a+1

a=4095

a<4095
W

X

Local register: a (12 bits)

Play behavior

data bus

analog-to-
digital

converter

digital-to-
analog

converter
ad_ld da_ld

Rw RenRa12

16

processor

ad_buf

4096x16
RAM

15

RTL Design
Read-Only Memory – ROM

Memory that can only be read from, not
written to

Data lines are output only
No need for rw input

Advantages over RAM
Compact: May be smaller
Nonvolatile: Saves bits even if power supply
is turned off
Speed: May be faster (especially than DRAM)
Low power: Doesn’t need power supply to
save bits, so can extend battery life

Choose ROM over RAM if stored data won’t
change (or won’t change often)

For example, a table of Celsius to Fahrenheit
conversions in a digital thermometer

32

10
data

addr

rw

en

1024× 32
RAM

RAM block symbol

32

10
data

addr

en

1024x32
ROM

ROM block symbol

16

RTL Design
Read-Only Memory – ROM

Internal logical structure similar to RAM, without the data input lines

32

10
data

addr

en

1024x32
ROM

ROM block symbol

ROM cell

addr0
addr1

addr(A-1)

clk
en

addr

Let A = log2M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

AxM
decoder

word
enable

rdata(N-1) rdata(N-2) rdata0

bit storage
block
(aka “cell”)

word

word
enable

word
enable

data

data

5

17

RTL Design
ROM Types

If a ROM can only be read, how are the
stored bits stored in the first place?

Storing bits in a ROM known as
programming
Several methods

Mask-programmed ROM
Bits are hardwired as 0s or 1s during
chip manufacturing

2-bit word on right stores “10”
word enable (from decoder) simply
passes the hardwired value through
transistor

Notice how compact, and fast, this
memory would be

cell cell

word
enable

data line data line01

addr0
addr1

addr(A-1)

en

ad
dr

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A ⋅ M
decoder

word
enable

data(N-1) data(N-2) data0

bit storage
block
(a cell)

word

,,,,

cell
word

enable
word

enable

data

data

18

RTL Design
ROM Types

Fuse-Based Programmable ROM
Each cell has a fuse
A special device, known as a programmer,
blows certain fuses (using higher-than-
normal voltage)

Those cells will be read as 0s (involving
some special electronics)
Cells with unblown fuses will be read as 1s
2-bit word on right stores “10”

Also known as One-Time
Programmable (OTP) ROM

cell cell

word
enable

data line data line11

blown fusefuse

addr0
addr1

addr(A-1)

en

ad
dr

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A ⋅ M
decoder

word
enable

data(N-1) data(N-2) data0

bit storage
block
(a cell)

word

,,,,

cell
word

enable
word

enable

data

data

a

19

RTL Design
ROM Types

Erasable Programmable ROM
(EPROM)

Uses “floating-gate transistor” in each cell
Special programmer device uses higher-
than-normal voltage to cause electrons to
tunnel into the gate

Electrons become trapped in the gate
Only done for cells that should store 0
Other cells (without electrons trapped in
gate) will be 1

2-bit word on right stores “10”

Details beyond our scope – just general
idea is necessary here

To erase, shine ultraviolet light onto chip
Gives trapped electrons energy to escape
Requires chip package to have window

addr0
addr1

addr(A-1)

en

ad
dr

Let A = log2 M

a0
a1

d0

d1

d(M-1)

a(A-1)

e

A ⋅ M
decoder

word
enable

data(N-1) data(N-2) data0

bit storage
block
(a cell)

word

,,,,

cell
word

enable
word

enable

data

data

cell cell

word
enable

data line data line

eÐeÐ
a

ting

g

a

t

e t

r

t

or

trapped electrons

01

flo
at

in
g-

ga
te

tra

ns
is

to
r

20

RTL Design
ROM Types

Electronically-Erasable Programmable ROM
(EEPROM)

Similar to EPROM
Uses floating-gate transistor, electronic programming to
trap electrons in certain cells

But erasing done electronically, not using UV light
Erasing done one word at a time

Flash memory
Like EEPROM, but all words (or large blocks of words)
can be erased simultaneously
Become common relatively recently (late 1990s)

Both types are in-system programmable
Can be programmed with new stored bits while in the
system in which the ROM operates

Requires bi-directional data lines, and write control input
Also need busy output to indicate that erasing is in
progress – erasing takes some time

a

ting

g

a

t

e t

r

t

or

32

10
data

addr

en

write

busy

1024x32
EEPROM

6

21

RTL Design
Blurring of Distinction Between ROM and RAM

We said that
RAM is readable and writable
ROM is read-only

But some ROMs act almost like RAMs
EEPROM and Flash are in-system programmable

Essentially means that writes are slow
Also, number of writes may be limited (perhaps a few million times)

And, some RAMs act almost like ROMs
Non-volatile RAMs: Can save their data without the power supply

One type: Built-in battery, may work for up to 10 years
Another type: Includes ROM backup for RAM – controller writes RAM contents to
ROM before turning off

New memory technologies evolving that merge RAM and ROM benefits
e.g., MRAM

Bottom line
Lot of choices available to designer, must find best fit with design goals

EEPROM
ROM Flash

NVRAM

RAM
a

22

RTL Design
Hierarchy and Abstraction

Hierarchy helps us manage complexity
To go from transistors to gates, muxes,

decoders, registers, ALUs, controllers, datapaths,
memories, queues, etc.
Imagine trying to comprehend a controller and
datapath at the level of gates

Abstraction
Hierarchy often involves not just grouping items
into a new item, but also associating higher-level
behavior with the new item, known as abstraction

e.g., an 8-bit adder has an understandable high-
level behavior – it adds two 8-bit binary numbers

Frees designer from having to remember, or even
from having to understand, the lower-level details

P

r

o

vin

c

e 3

P

r

o

vin

c

e 2

P

r

o

vin

c

e 1

vinvin

vin

P

r

o

c

e 3

P

r

o

c

e 2

P

r

o

c

e 1

a7.. a0 b7.. b0

s7.. s0co

ci8-bit adder

23

RTL Design
Hierarchy and Composing Larger Components from Smaller Versions

A common task is to compose smaller components
into a larger one

Gates: Suppose you have plenty of 3-input AND gates,
but need a 9-input AND gate

Can simple compose the 9-input gate from several 3-input
gates

Muxes: Suppose you have 4x1 and 2x1 muxes, but
need an 8x1 mux

s2 selects either top or bottom 4x1
s1s0 select particular 4x1 input
Implements 8x1 mux – 8 data inputs, 3 selects, one
output

P

r

o

vin

c

e 3

P

r

o

vin

c

e 2

P

r

o

vin

c

e 1

vinvin

vin

P

r

o

c

e 3

P

r

o

c

e 2

P

r

o

c

e 1

4⋅ 1

2⋅ 1

d

d

i0
i1

i1

i0

i2
i3

i0
i1
i2
i3

i4
i5
i6
i7

s1 s0

s0
4⋅ 1

d

i0
i1
i2
i3

s1 s0

s1 s0 s2

a

24

RTL Design
Hierarchy and Composing Larger Components from Smaller Versions

Composing memory very common
Making memory words wider

Easy – just place memories side-by-side until desired width obtained
Share address/control lines, concatenate data lines
Example: Compose 1024x8 ROMs into 1024x32 ROM

P

r

o

vin

c

e 3

P

r

o

vin

c

e 2

P

r

o

vin

c

e 1

vin

P

r

o

c

e 3

P

r

o

P

r

o

1024x32
ROM

1024x8
ROM

data

addr

en
data

8 8

32

8 8

10

10

en

en

addr

addr

data(31..0)

1024x8
ROM

addr

en
data

1024x8
ROM

addr

en
data

1024x8
ROM

addr

en
data

7

25

RTL Design
Hierarchy and Composing Larger Components from Smaller Versions

Creating memory with more words
Put memories on top of one another until the
number of desired words is achieved
Use decoder to select among the memories

Can use highest order address input(s) as
decoder input
Although actually, any address line could be
used

Example: Compose 1024x8 memories into
2048x8 memory

P

r

o

vin

c

e 3

P

r

o

vin

c

e 2

P

r

o

vin

c

e 1

vinvin

P

r

o

c

e 3

P

r

o

c

e 2

1024x8
ROM

addr

en data

1024x8
ROM

addr

en data

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0

0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1 0

1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1

a0a10a9a8

a10 just chooses
which memory
to access

To create memory with more
words and wider words, can first
compose to enough words, then
widen.

a

a

2048x8
ROM

data

8

11

11

en

addr

1024x8
ROM

addr

en data

8

1024x8
ROM

addr

en data

8

a9..a0

a10 d0

d1

en

addr

1x2
dcdi0
e

