
1

ECE 274 Digital Logic – Fall 2008

RTL Design – Determining Clock Frequency 
and Behavioral RTL Design: C-to-Gates

Digital Design 5.4 – 5.5

Digital Design

Chapter 5: 
RTL Design

Slides to accompany the textbook Digital Design, First Edition, 
by Frank Vahid, John Wiley and Sons Publishers, 2007. 

http://www.ddvahid.com

Copyright © 2007 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities, 
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf 
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means. 
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors 
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information. 

3

RTL Design
RTL Design Method

5.2

4

RTL Design
Determining Clock Frequency

Designers of digital circuits 
often want fastest 
performance

Means want high clock 
frequency

Frequency limited by longest 
register-to-register delay

Known as critical path
If clock is any faster, incorrect 
data may be stored into register
Longest path on right is 2 ns

Ignoring wire delays, and 
register setup and hold times, 
for simplicity

5.4

a

+

b

c

2 ns
delay

clk



2

5

RTL Design
Critical Path

Example shows four paths
a to c through +: 2 ns
a to d through + and *: 7 ns
b to d through + and *: 7 ns
b to d through *: 5 ns

Longest path is thus 7 ns
Fastest frequency

1 / 7 ns = 142 MHz

+ *

c d

7 ns7 ns

5 ns
delay

2 ns
delay

Max
(2,7,7,5)
= 7 ns

a b

5 
ns

7 
ns

7 
ns2 
ns

6

RTL Design
Critical Path Considering Wire Delays

Real wires have delay too
Must include in critical path

Example shows two paths
Each is 0.5 + 2 + 0.5 = 3 ns

Trend
1980s/1990s: Wire delays were tiny 
compared to logic delays
But wire delays not shrinking as fast as 
logic delays

Wire delays may even be greater than 
logic delays!

Must also consider register setup and 
hold times, also add to path
Then add some time to the computed 
path, just to be safe

e.g., if path is 3 ns, say 4 ns instead

a

+

b

c

2 ns

3 ns

3 
ns

0.5 ns
0.5 ns

0.5 ns

clk

3 
ns

7

RTL Design
A Circuit May Have Numerous Paths

Paths can exist
In the datapath
In the controller
Between the 
controller and 
datapath
May be hundreds 
or thousands of 
paths

Timing analysis 
tools that evaluate 
all possible paths 
automatically very 
helpful

Combinational logic

c

tot_lt_s

clk

n1

d

tot_ld

tot_lt_s

tot_clr

s0s1

n0

State register

s

8 8

8

8

a

ld

clr
tot

Datapath

8-bit
<

8-bit
adder

(c)

(b) (a)

8

RTL Design
Behavioral Level Design: C to Gates

Earlier sum-of-absolute-differences example
Started with high-level state machine
C code is an even better starting point -- easier to understand

5.5

!goS0
go

S1 sum = 0
i = 0

S3 sum=sum+abs(A[i]-B[i])
i=i+1

S4 sad_reg = sum

S2

i<256

(i<256)’

a

int SAD (byte A[256], byte B[256]) // not quite C syntax
{

uint sum; short uint I;
sum = 0;
i = 0;
while (i < 256) {

sum = sum + abs(A[i] – B[i]);
i = i + 1;

}
return sum;

}

C code



3

9

RTL Design
Behavioral-Level Design: Start with C (or Similar Language)

Replace first step of RTL design method by two steps
Capture in C, then convert C to high-level state machine
How convert from C to high-level state machine?

Step 1A: Capture in C

Step 1B: Convert to high-level state machine
a

10

RTL Design
Converting from C to High-Level State Machine

Convert each C construct to 
equivalent states and 
transitions
Assignment statement

Becomes one state with 
assignment

If-then statement
Becomes state with condition 
check, transitioning to “then”
statements if condition true, 
otherwise to ending state

“then” statements would also 
be converted to states

target = expression; target=
expression

(then stmts)
if (cond) {

// then stmts
}

!cond

cond

(end)

a

a

11

RTL Design
Converting from C to High-Level State Machine

If-then-else
Becomes state with condition 
check, transitioning to “then”
statements if condition true, or 
to “else” statements if condition 
false

While loop statement
Becomes state with condition 
check, transitioning to while 
loop’s statements if true, then 
transitioning back to condition 
check

if (cond) {
// then stmts

}
else {

// else stmts
}

!cond

cond

(end)

(then stmts) (else stmts)

while (cond) {
// while stmts

}

!cond

cond

(while stmts)

(end)

a

a

12

RTL Design
Simple Example of Converting from C to High-Level State Machine

Simple example: Computing the maximum of two numbers
Convert if-then-else statement to states (b)
Then convert assignment statements to states (c)

(end)

(c)

X>Y

!(X>Y)

(end)

(then stmts) (else stmts)

(b)

X>Y

!(X>Y)

Max=X Max=Y

(a)

Inputs: uint X, Y
Outputs: uint Max

if (X > Y) {

}
else {

}

Max = X;

Max = Y;

a a



4

13

RTL Design
Example: Sum-of-Absolute-Differences C

Convert each construct to 
states

Simplify when possible, 
e.g., merge states

From high-level state 
machine, follow RTL design 
method to create circuit
Thus, can convert C to 
gates using straightforward 
automatable process

Not all C constructs can be 
efficiently converted
Use C subset if intended 
for circuit
Can use languages other 
than C, of course

sum = sum + abs(A[i] - B[i]);

(a)

Inputs: byte A[256, B[256]
bit go;

Output: int sad
main()
{

uint sum; short uint I;
while (1) {

sum = 0;
i = 0;

while (!go);

while (i < 256) {

i = i + 1;
}
sad = sum;}

}

(d)

!go go

sum=0
i=0

(g)

!go go

sum=0
i=0

!(i<256)

i<256

sad =
sum

sum=sum
+ abs
i = i + 1

sum=0

i=0

(b)

!(!go)

!go

(c)

!go go

(e)

!go go

sum=0
i=0

while stmts

!(i<256)

i<256

sad =
sum

(f)

!go go

sum=0
i=0

!(i<256)

i<256

sum=sum
+ abs
i = i + 1

a


