ECE 274 Digital Logic — Fall 2008

RTL Design — Determining Clock Frequency
and Behavioral RTL Design: C-to-Gates

Digital Design 5.4 — 5.5

THE LINIVERSITY OF

ARIZONA.

p TUCSON ARZONA

Digital Design

Chapter 5:
RTL Design

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.

http://www.ddvahid.com

Copyright © 2007 Frank Vahid

Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activiies,

subject to keeping this copyright notice in place and unmodified. These slides may be posted

ted pdf versions on public

websites... PowerPoint source (or pdf

with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.

Instructors may make prir f the slid lable to students for a

may obtain PowerPoint source or obtain special use permissions from Wiley see

m for information,

ge, without incurring royaltes. Any other use requires explicit permission. Instructors

RTL Design

RTL Design Method

5.2

Step

Description

Caprure a high-level

Describe the system's desired behavior as a high-level state machine.

';_ state machine The state machine consists of states and transitions. The state machine

=2 is “high-level” because the transition conditions and the state actions
are more than just Boolean operations on bit inputs and outputs

L . - - -

= Create a datapark Create a datapath to carry out the data operations of the high-level

= - achine

2 state machine,

o

o Connect the datapath - Connect the datapath 1o a controller block. Connect external Boolean

2 o acontrofler inputs and outputs to the controller block.

Step 4

Derive the
controller’s FSM

Convert the high-level state machine to a finite-state machine (FSM)
for the controller, by replacing data operations with setting and reading
of control signals to and from the datapath.

RTL Design

Determining Clock Frequency

5.4

o Designers of digital circuits
often want fastest
performance

o Means want high clock
frequency

o Frequency limited by /ongest
register-to-register delay

o Known as critical path

o If clock is any faster, incorrect
data may be stored into register

o Longest path on right is 2 ns

o Ignoring wire delays, and
register setup and hold times,
for simplicity

2ns
delay

RTL Design
Critical Path

o Example shows four paths
o a to ¢ through +: 2 ns

RTL Design

Critical Path Considering Wire Delays

o ato d through + and *: 7 ns
o b to d through + and *: 7 ns
o b to d through *: 5 ns
o Longest path is thus 7 ns
o Fastest frequency
o 1/7ns=142 MHz

o

o

Real wires have delay too
O Must include in critical path
Example shows two paths
O Eachis0.5+2+05=3ns
Trend
o 1980s/1990s: Wire delays were tiny
compared to logic delays
o But wire delays not shrinking as fast as
logic delays
o Wire delays may even be greater than
logic delays!
Must also consider register setup and
hold times, also add to path
Then add some time to the computed
path, just to be safe
o0 e.g., if path is 3 ns, say 4 ns instead

RTL Design

A Circuit May Have Numerous Paths

RTL Design

Behavioral Level Design: C to Gates

o In the datapath Combinational logic

o Paths can exist
LT
o In the controller

I

tot_Id

O Between the P
controller and c

= tot_clr \

datapath /
o May be hundreds s :
or thousands of
paths
o Timing analysis i
tools that evaluate okl k=
all possible paths

. k| State register
automatically very >

helpful Iy

Datapath

{

i=0;

return sum;

55

C code

int SAD (byte A[256], byte B[256]) // not quite C syntax

uint sum; short uint I;
sum =0;

while (i < 256) {
sum = sum + abs(A[i] — B[i]);
i=i+1;

o Earlier sum-of-absolute-differences example

o Started with high-level state machine

o C code is an even better starting point -- easier to understand

RTL Design

Behavioral-Level Design: Start with C (or Similar Language)

o Replace first step of RTL design method by two steps
o Capture in C, then convert C to high-level state machine
o How convert from C to high-level state machine?
Step 1A: Capture in C

Step 1B: Convert to high-level state machine

Step Description

Diescribe

Step 1

RTL Design

Converting from C to High-Level State Machine

o Convert each C construct to
equivalent states and
transitions
o Assignment statement t
O Becomes one state with
assignment
o [If-then statement

o0 Becomes state with condition 'cond
check, trans_ltlonlng ‘to “then” i (cond) { - cond
statements if condition true, 1l then stmts (!hen{stmts)

otherwise to ending state }
(end)<P<—

o “then” statements would also
be converted to states

- on: target= a
target = expression; » g) expression

s o it inputs and

2 Create a davapatl datapath to carry ot the data operations of the high-level

= stute muchine.

= Comnect the daraparky Connect the dmapath 10 a controller block. Connect external Boolean

= wller inputs and outputs 1o the cont ok

- I M Convent the high-level state machineg to & finite-state machine (FSM)

& contmlier s FSM for the conr by repl £ opertions with seiming and reading

- of control signals g0 and from the datapath.

9
Converting from C to High-Level State Machine
o If-then-else
!cond

o Becomes state with condition if (cond) {
check, transitioning to “then”
statements if condition true, or)else (.
to “else” statements if condition I else stmts (end)
false } i

cond
then st »
I'then stmts (then stmts) (else stmts)

o While loop statement teond
o Becomes state with condition whie cond) { gl | :['::)
check, transitioning to while }
loop’s statements if true, then ©
transitioning back to condition
check e =

11

RTL Design

Simple Example of Converting from C to High-Level State Machine

Inputs: uint X, Y
Outputs: uint Max

+ 1(X>Y)
; X>Y l

it (X>Y){

\
(then stmts) (else stmts) @9
A
&
(c

(@ (b)

o Simple example: Computing the maximum of two numbers
o Convert if-then-else statement to states (b)
o Then convert assignment statements to states (c)

RTL Design

Example. Sum-of-Absolute-Differences C

Inputs: byte A[256, B[256]
bit go;

o Convert each construct to
states ey, "
o Simplify when possible, {m;‘:-(lgﬂ):{shorwm“:
e.g., merge states
o From high-level state
machine, follow RTL design
method to create circuit
o Thus, can convert C to
gates using straightforward
automatable process
o Not all C constructs can be
efficiently converted
o Use C subset if intended
for circuit
o Can use languages other
than C, of course

I while (i < 256) {
sum = sum + abs(Afi
izi+1;

13

