

	Step	Description
step 1	Capture the FSM	Create an FSM that describes the desired behavior of the con- troller.
7 date	Create the architecture	Create the standard architecture by using a state register of appropriate width, and combinational logic with inputs being the state register bits and the FSM inputs and outputs being the next state bits and the FSM outputs.
c date	Encode the states	Assign a unique binary number to each state. Each binary number representing a state is known as an <i>encoding</i> . Any encoding will do as long as each state has a unique encoding.
	Create the	Create a truth table for the combinational logic such that the
step 4	state table	logic will generate the correct FSM outputs and next state sig- nals. Ordering the inputs with state bits first makes this truth table describe the state behavior, so the table is a state table.
0	Implement	Implement the combinational logic using any method.
step	the combina-	

