
ECE 274 Tutorial for Lab1

This Course will use MAX+PLUS II software for Verilog design.

In the first lab, please generate a AND gate step by step follow the following instructions:

1: Open the MAX+PLUS II software and generate a new project – choose File – Project to generate project “andgate”

2: Open the text editor and input the Verilog code for AND gate:

module andgate(a,b,c);
input a, b;
output c;
reg c;

always @(a or b) begin
c = a & b;

 end

endmodule

andgate takes three arguments: two of them are inputs and the third is the output, which is specified in the header of the
module.

‘~’ operator negates the input . ‘&’ operator ANDs two inputs , ‘|’ operator ORs two inputs, while ‘^’ operator performs
a logical XOR on two inputs. Hence, ~ (a | b) implements a NOR function where a and b are taken to be two inputs.
Verilog uses C-style comments. ‘//’ marks the beginning of a line of comments. Moreover, anything between /* and */ is
also treated as a comment.

always is a statement that lets you define blocks of code, in which assignments will only happen as selected signals
(specified in the header of the statement) change.

For example:

input a, d
reg out

always @(a or d) begin

out = d;
 end

sets out to d only if the value of a or the value of d changes. Notice a slightly different syntax (we’re using the word ‘or’
as opposed to the symbol ‘|’, and ‘=’ instead of ‘assign’).
Notice that all signals on the left-hand side of the ‘=’ sign inside always blocks must be declared as reg, not wire.

If you need to perform more than one operation under the always block, you need to enclose the operations with begin and
end.

always is most often combined with if (and possibly else if and else) to create powerful sequential logic systems. Study
the following example:

always @(a) begin
if (a==2’b01) begin

b = 2’b01;
 end

else if (a>2’b01) begin
b = a;

 c = 1;
 end
end

3. Save the Verilog code as .v file.

Please pay attention here; the file name must be the same as the module name. So this will be saved as andgate.v

4. Use the compiler to compile the code:

Choose “Processing” – “Functional SNF Extractor”

Click “Start” to run the compiler.

The compiler will show there are no errors if the code is OK.

5. Simulation

First, choose the “Waveform Editor”.

Then choose “node” and select “Enter Nodes From SNF”

Click list.

Click “>>” button. All the input and output pins will be showed in the window “selected nodes & groups”.

Save as “andgate.scf”

Change the input signals a and b manually to “a=0, b=0”, “a=0, b=1”, “a=1, b=0”, “a=1, b=1”, 20 ns a period.

Choose Simulator

Set end time to 100ns and click start,

Check the result waveform with the “and” truth table. And show the result to TA.

By doing the design of “andgate” you will become familiar with the software and Verilog language. Please design the OR
and Inverter gate using Verilog by yourself. Compile the code and check the waveform. Show the result to TA.

