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Abstract

The face of a human being conveys a lot of information about identity and emotional state of the person. Face detection in a complex scene and its segmentation from the background forms a prerequisite for any practical verification system using face as the main attribute. So robust detection and segmentation forms the first step in building a foolproof system. In this report a method for detection and segmentation of faces in color images with complex backgrounds is described. The algorithm begins with the modeling of skin and non-skin color using a database of skin and non-skin pixels respectively. A unimodal Gaussian as well as a Gaussian mixture model is used to estimate the underlying density function. In Gaussian mixture modeling, a constructive method is used for determining the model order automatically. The models are  used in computing the skin probability image from an input color image. Then a hierarchy of connected operators is used to detect the presence of face(s) in the image and segment them. Skin color is a simple but powerful pixel based feature. It allows detection/segmentation of multiple faces in an image. Also skin color analysis is robust to changes in scale, resolution and partial occlusion. Implementation details and simulation results are discussed in the report. 

1. Introduction

Recent years has seen tremendous amount of research being carried out in the field of biometrics. The idea of using physical attributes – face, fingerprints, voiceprints or any of several other characteristics to prove human identity has a lot of appeal. Any trait of human beings that is unique and sufficiently stable can serve as a distinguishing measure for verifying, recognizing or classifying them. Face is one such attribute of human beings that clearly distinguishes different individuals. In fact, face is the attribute that is most commonly used by human visual system to identify people. This gives us the cue as to why research has been aimed at developing computational systems for automatic face recognition. Automatic face recognition is a process of identifying a test face image with one of the faces stored in a prepared face database[1]. Real world images need not necessarily contain isolated face(s) that can directly serve as inputs to a face recognition (FR) system. Hence, there is a need to isolate or segment facial regions to be fed to a FR system. 

With the growing demand for content-based functionalities in image processing applications, the analysis and classification of image content becomes an important task. This development is also enforced by recent standardization efforts (MPEG 4/7) [3]. Human machine interfaces, automated camera and surveillance systems are a few other applications where face detection/segmention is a necessary initial step.

It may be felt that face detection is a trivial task. After all, we human beings, do this in our daily lives without any effort. The human visual system can easily detect and differentiate a human face from its surroundings but it is not easy to train a computer to do so. The detection of a face in a scene comes out to be an easy task for the human brain due to a lot of parallelism achieved by it. It has not been possible for the present day computational systems to reach that level of parallelism in processing information. In pattern recognition parlance, human face is a complex pattern. Different poses and gestures of the face accentuate complexity. The detection scheme must operate flexibly and reliably regardless of lighting conditions, background clutter in the image, multiple faces in the image, as well as variations in face position, scale, pose and expression. The system should be able to detect the face even if it is occluded. Therefore, a systematic approach, keeping in mind, both the robustness and the computational complexity of the algorithm is called for. A number of approaches for face detection have been proposed. To list some, the problem has been approached using techniques like Principal Component analysis [2], template matching or using neural network methods, image motion concepts and skin color. In this report, a method for detecting/segmenting human face(s) using human skin color is described.  

A brief description of the approach followed in this project for face detection/segmentation is explained in Section 2. The modeling of skin color distribution as a single component Gaussian is explained in Section 3. Section 4 deals with fitting the optimum order Gaussian mixture model to the available skin data. Section 5 explains the steps involved in using these models in computing the skin probability image from an input color image. The analysis of the skin probability image using a set of connected operators is described in Section 6. The implementation details and the experimental results are explained in Section 7. Finally the report is concluded in Section 8 along with a brief discussion of possible ways to improve the performance of the algorithm.

2. Approach

In this project a method for face detection/segmentation in color images has been implemented. The algorithm begins by modeling human skin color in a suitable chrominance space using a database of skin pixels. Two methods of modeling the skin color have been implemented. In the first method the skin color distribution is modeled as a unimodal or single component Gaussian. In the second method a Gaussian mixture model is used. Similarly a non-skin or background model is built using a database of non-skin pixels. These two models are used in computing the probability of each pixel in an input color image to represent skin. Thus a Skin Probability image is obtained in which the gray level of each pixel represents the probability of the corresponding pixel in the input image to represent skin (scaled by a constant factor). The skin probability image is then analyzed using a set of connected operators. The result is a set of  connected components that have a high probability of representing a face. Finally a normalized area operator is used to retain only those components that are sufficiently large in size in comparison to the largest face component detected. The areas lying within the bounding boxes of these connected components, in the input image, are faces. They are segmented out from the image. The details of the algorithm are explained in further sections.                                       

3. Skin color modeling using a unimodal Gaussian
The inspiration to use skin color analysis for initial classification of an image into probable face and non-face regions stems from a number of simple but powerful characteristics of skin color. Firstly, processing skin color is simpler than processing any other facial features.  Secondly, under certain lighting conditions, color is orientation invariant. The major difference between skin tones is intensity eg. due to varying lighting conditions and different human races [3]. The color of human skin is different from the color of most other natural objects in the world. An attempt to build a comprehensive skin and non-skin models has been done in [4].
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One important factor that should be considered while building a statistical model for color is the choice of a Color Space. Segmentation of skin colored regions becomes robust if only the chrominance component is used in analysis. Therefore, the variations of luminance component is eliminated as much as possible by choosing the CbCr plane (chrominance components) of the YCbCr color space to build the model. Research has shown that skin color is clustered in a small region of the chrominance space [4]. The distribution of a set of sample training skin pixels in the CbCr plane is given in the figure below (Fig.1).

Fig. 1 Skin Pixel Distribution

The above figure shows that the color of human skin pixels is confined to a very narrow region in 

the chrominance space. Motivated by the results in the figure, the skin color distribution in the chrominance plane is modeled as a unimodal Gaussian [3]. A large database of labeled skin pixels is used to train the Gaussian model. The mean and the covariance of the database characterize the model. Images containing human skin pixels as well as non-skin pixels are collected. The skin pixels from these images are carefully cropped out to form a set of training images.

Let c = [Cb Cr]T denote the chrominance vector of an input pixel. Then the probability that the given pixel lies in the skin distribution is given by:
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(3.1)                    
where ms and Σs represent the mean vector and the covariance matrix respectively of the training pixels. Thus the mean and the covariance have to be estimated from the training data to characterize the skin color distribution as a unimodal Gaussian. This model is used to obtain the Skin Probability image of an input color image as described in Section 5. 

4. Skin color modeling using a Gaussian Mixture Model

In the previous section, modeling of skin color using a unimodal Gaussian was considered. The reason for using a unimodal Gaussian was the localization of skin color to a small area in the CbCr chrominance space. Though the skin color values are distributed in a localized area in the chrominance space, the histogram (see Fig. 5) of the data available shows randomly distributed peaks in that region. Hence a Gaussian with a single mean may not provide a good approximation of the underlying distribution function. A mixture model consisting of a number of Gaussian components can better approximate such a distribution. In the theory of density estimation, mixture models [6] were developed to combine the advantages of both parametric and non-parametric methods of density estimation. Parametric methods estimate a density function for a given data set by calculating the parameters of a standard density function that approximately fits the given data. Parametric models allow the density function to be evaluated very quickly for new values of input data. On the other hand, non-parametric methods fit very general forms of density function to the given data. In the non-parametric method, the density function can be represented as a linear combination of kernel functions with each kernel centered on each data point [6]. This makes the number of variables in the model to grow proportional to the amount of training data. Hence evaluation of density function for new values of input data becomes computationally expensive. Mixture models provide a trade-off between the two and the method could be called semi-parametric density estimation [6]. 

In the modeling of skin color using a multimodal Gaussian, the probability of each color value, given it is a skin color, is a linear combination of its probabilities calculated from the M Gaussian components. Thus the probability of a pixel c = [Cb Cr]T, given it is a skin pixel, is:
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(4.1)

where,

M is the number of Gaussian components in the mixture model

P(j) is the weighting function for the j th component. It is also called the prior probability of the data point having been generated from the component j of the mixture.
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(4.2)
where µj is the mean and Σj is the covariance matrix of the j th component

Note that the priors are chosen to satisfy :
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(4.3)
Hence the parameters to be estimated from the given data are the number of components M, mean vectors mj ,Covariance matrices Σj  ,and the prior probabilities P(j),  j = 1 to M,  i.e. for each of the M components. A way to decide the number of components is to observe the histogram of the data and choose M depending upon the number and location of the peaks in the histogram. In this project, the number of components is decided automatically by a constructive algorithm [5] using the criteria of maximizing a likelihood function. The details of the algorithm are described later. Once the number of components M is decided, the parameters, viz. the mean, the covariance, and the prior probability of each component have to be calculated from the given data. A number of procedures have been developed for determining the parameters of a mixture model from a given dataset. One approach is to maximize a likelihood function of the parameters for the given set of data [8]. The negative log-likelihood for the dataset is given by:

E = -lnL 
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(4.4)
which can be regarded as an error function. Note that N is the number of data points cn. Maximizing the likelihood L is equivalent to minimizing the error function E. A special case of Maximum Likelihood (ML) techniques is the Expectation Maximization (EM) algorithm. This algorithm has been used to determine the parameters of the mixture model that best fit the data in the ML sense.

The EM algorithm [6,7] begins by making some initial guess for the parameters of the Gaussian mixture model, which shall be called the ‘old’ parameter values. The new parameter values are evaluated using the following equations. This gives a revised estimate for the parameters which shall be called the ‘new’ parameter values. The update equations move the parameters in that direction that minimizes the error function E for the data set. In the next iteration the ‘new’ parameter values become the ‘old’ ones and the process is repeated until convergence of the error function.

The change in the error function E is given by:

· = Enew - Eold = 





(4.5)
where pnew(cn) represents the probability density evaluated using the ‘new’ values for the parameters and pold(cn) represents the density evaluated using the ‘old’ values for the parameters. Minimizing Enew w.r.t the ‘new’ parameter values [6] the following update equations are obtained for the parameters of the mixture model:

  





(4.6)





(4.7)






(4.8)  

where,






(4.9)
Note that the superscript ‘old’ refers to the quantities evaluated using old parameter values, similarly for the superscript ‘new’.

In order to determine the number of Gaussian components (model order) required to model the skin data, a standard technique known as cross validation [5] is used. In this technique the available data is divided into independent training and validation sets. A number of models of different order are trained, using the training data, so as to minimize the error function described before (Expectation Maximization). The error function is computed for validation data also using the Expectation Maximized parameters for each model order. Among these models, the one with the lowest error for the validation set is considered to exhibit the best generalization and its order is taken to be optimal. A constructive scheme involving splitting up of components and monitoring generalization ability is employed. The available data set is partitioned into disjoint training and validation sets. The algorithm begins with a small model order typically one. Model order is then adapted by iteratively applying EM and splitting components. The likelihood for the validation set is computed after every iteration. The optimal model order corresponds to the peak in this function over time. The following sub-sections describe the methods of splitting components and automatic model order selection.

4.1 Splitting components

For each component j, the total responsibility rj for a data set is defined as:







(4.10)
The component k with the lowest total responsibility for the validation set is selected for splitting:







(4.11)
This component k is split to generate two new components with means mnew1 and mnew2 ,and covariance matrices Snew1 and Snew2 as follows:







(4.12)
where e1 is the largest eigenvalue of the covariance matrix Sk  and u1 is the corresponding eigenvector. The directions of the eigenvectors of covariance matrix represent the directions of maximum variance. Hence the new mean points are determined along the direction of the maximum variance on either side of the old mean.

Also the prior probabilities for the new components are assigned as:







(4.13)
4.2 Automatic Model Order Selection

Let i denote the iteration, Mi the number of components at the ith iteration and Li the likelihood for the validation set w.r.t the model at iteration i. The initial number of components can be taken to be M0 = 1. The algorithm [5] for model order selection can be outlined as follows:

1.  Apply Expectation-Maximization for model with Mi components.

2.  Compute Li for validation set.

3.  Save model

4.  Find component j with the lowest total responsibility      

5.  Split component j
6.  Restart from step 1 with Mi+1= Mi+1 and i = i+1.

The above sequences of steps are repeated until Mi reaches a desired value (10 in this implementation). The peak in the Likelihood function for the validation data corresponds to the optimal model order. The parameters of this optimal order model are used to calculate the probability p(c/skin) as in eq. (4.1).

5. Skin Probability image

Once the skin color is modeled using either a unimodal or a multimodal Gaussian, it can be used to calculate the probability of an input pixel representing skin,i.e, p(skin/c), where c is the input color value. As evident from the previous sections, the Gaussian model(unimodal or multimodal) can be used to evaluate the probability of a color value given it is a skin color, i.e., p(c/skin). This is again used to compute the required probability p(skin/c) using the Bayes’ formulation [3]:





(5.1)
To calculate the above probability for each input pixel, the skin and the non-skin classes are assumed to occur with equal probability [4]. Hence 

P(skin) = P(non-skin) = 0.5



(5.2)

which gives,
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(5.3)                             

To obtain the probability, p(c/non-skin), a similar Gaussian model is built for non-skin pixels also which is called the non-skin or the background model. The background or the non-skin color is modeled as a unimodal Gaussian here, to reduce the computational complexity of skin probability calculation. A multimodal Gaussian could have been assumed for non-skin color modeling also, but here, a unimodal Gaussian gave satisfactory results at the sametime reducing the computational overhead. Finally, given an input color image, the two conditional probabilities and the above ratio are computed pixel-by-pixel to give the probability of each pixel representing skin given its chrominance vector c. This results in a gray level image where the gray value at a pixel gives the probability of that pixel representing skin. This is called the Skin Probability image given by:
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(5.4)

where a is a suitable scaling factor and cij is the chrominance value of pixel (i,j). Here a is chosen to be 255 so that the highest probability value results in a gray level of 255 in the Skin Probability image. The skin probability image for a sample test image of Fig. 8 is shown in Fig. 9.

6. Face Detection and Segmentation using Connected Component Operators

Connected component operators are non-linear filters that eliminate parts of the image, while preserving the contours of the remaining parts. This simplification property makes them attractive for segmentation and pattern recognition applications. The skin probability image obtained in the previous section may contain high gray levels at non-skin regions where the background color resembles the color of skin. Also there will be bright regions corresponding to other parts of the human body where the skin may be exposed. These regions have to be eliminated from being considered as probable face candidate regions. As a first step, gray level ‘open’ operation is performed. This operation involves gray level erosion followed by gray level dilation using the same structuring element. Erosion removes small and thin isolated noise-like regions that have very low probability of representing a face. Dilation preserves those regions that are not removed during erosion. Hence, the effect of using area open is removal of small but bright regions of the skin probability image. This is followed by gray level ‘close’ operation. Closing is dilation followed by erosion using the same structuring element. The dilation during close operation enhances small regions of low intensity that may lie within large regions of high intensity in the skin probability image. Hence, during the thresholding step that follows, holes are not created within large high probability regions with a small gray level depression inside their periphery. These depressions may be caused due to bad lighting conditions or the skin model may fail to give a high probability in those regions. The erosion (of close operation) removes the extra pixels that may be added, during the previous dilation operation, as high probability pixels around existing regions. A smaller structuring element is used for close operation so that a large area of pixels around existing regions is not enhanced [3].     

This image is then thresholded into a binary image for further shape analysis. A threshold of 60 is chosen here so that large areas of relatively smaller gray levels that remain after open/close operation are not excluded from shape analysis. The connected components are labeled and isolated and shape analysis is done separately on each connected component. A hierarchy of 3 shape based connected operators [3] is used for deciding whether a component represents a face or not. These simple but effective operators rely on the combinations of the pixel area (A), perimeter (P) and the bounding box dimensions (Dx, Dy) of the connected components. Hence these have to be computed only once for the three operators. Finally a normalized area operator is used that rejects connected components that have face-like shape but have pixel area less than a certain fraction of that of the largest face component detected. The choice of this operator is based on observations made on a number of images containing multiple faces.  The following is a description of the various operators used [3]:

6.1 Compactness:
Compactness (C) of a connected component is defined as the ratio of its area to the square of its perimeter.
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(6.1)

This criterion is maximized for circular objects. Faces are nearly circular in shape and hence face components exhibit a high value for this operator.  A threshold is fixed for this operator based on the observations on various face components. If a particular component shows a compactness value greater than this threshold its is retained for further analysis, else discarded.

6.2 Solidity:

Solidity (S) of a connected component is defined as the ratio of its area to the area of the bounding box.


[image: image10.wmf]Dy

Dx

A

Solidity

.

=





(6.2)


The solidity also assumes a high value for face components. If the solidity of a component is lesser than a threshold value, it is eliminated, otherwise retained for further analysis.

 6.3 Orientation:
Orientation (O) is nothing but the aspect ratio of the bounding box surrounding the component.
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(6.3)

Normally, face components have orientation within a range. This range is found out based on observations on a number of images. If a component's orientation falls out of this range, the component is eliminated.

6.4 Normalized Area:
It is the ratio of the area of the connected component to that of the largest component that remains after the application of the above three operators. In images containing multiple faces it is assumed that the smallest face component has an area that is not less than a certain fraction of the largest face component. The connected components that remain after the application of all the above operators contain faces.

The regions in the original image that lie within the bounding boxes of these connected components are faces and are segmented out. The segmented faces can be input to an application that requires isolated faces for further processing.

7. Implementation details and Experimental results

For skin modeling a training set of skin images containing 57,410 skin pixels is used. These images were obtained by cropping off skin regions in images containing human subjects, downloaded from the web, manually. The database of skin images used is shown in Fig. 2. Similarly for the non-skin model, background regions from these web images are used. The database of non-skin images is shown in Fig. 3.  As discussed in Section 3, the skin color is localized to a small region in the CbCr chrominance space as can be seen from Fig. 4, where a projection of the histogram of the skin pixels in the database on the CbCr plane is shown. The histogram of the training skin pixels is shown in Fig. 5.  The non-skin database histogram projected onto the CbCr plane is shown in Fig. 6 The unimodal Gaussian density estimate for the skin pixel distribution is shown in Fig 7. 

The unimodal Gaussian skin and non-skin models are used to calculate the skin probability image for an input test image. The skin probability image is analyzed using the set of connected operators described before, to detect and segment face(s) present in the image. The thresholds for various connected operators have been arrived at, after testing a number of images containing face(s). Appendix I shows test results for the Compactness (C), Solidity (S), and Orientation (O) operators. Appendix II shows the results for Normalized area operator over a set of test images.

Threshold values for the operators used:

Compactness threshold = 0.025

Solidity threshold         = 0.5218

Orientation range         = 0.9 to 2.1

The threshold for binary segmentation has been decided based on the results obtained using different values.

Binary segmentation threshold = 60 

Also the structuring elements used, viz. 5-by-5 with a constant gray level of 25 for open operation, and 3-by-3 with a constant gray level of 15 for close operation, were obtained by observing the performance on a number of images.

 A sample input image shown in Fig. 8 has the skin probability image, using unimodal gaussian for skin color, as in Fig. 9 The corresponding opened/closed image is shown in Fig. 10, and the thresholded image in Fig. 11. Finally the result of segmentation is as shown in Fig. 12. The segmentation results, using a  unimodal Gaussain skin model, for a few test images are shown from Fig. 13 to Fig. 22. The results of both true and false segmentation are shown. In Fig. 20, a false segmentation has occurred because the skin pixels of the left leg have been exposed and the resulting component from thresholding has a face-like shape. The false segmentation in Fig. 22 is because of the background containing many skin-colored regions and one of the components in the background having values for the operators within the range for a face .

The histogram of skin data in Fig. 5 shows that the peaks are randomly distributed in the CbCr chrominance plane. To improve the approximation of the underlying distribution, a Gaussian mixture model is trained using the same skin data. In the implementation of the Expectation Maximization (EM) algorithm, an attempt has been made to reduce the computation required to perform the iterative calculations. Observing the iterative equations (4.6), (4.7), (4.8), it is seen that every expression requires the terms Pold(j/cn) and 
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The term Pold(j/cn) is obtained by just accessing the element Prior_Prob(n,j) of the matrix Prior_Prob which is calculated once for a given set of GMM parameters and a given set of data. The term 
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During every iteration of the EM algorithm, the updated parameters are obtained by passing the old parameters and the training data set to the calc_prob function and accessing the two output arrays in the iterative equations. This method saves computation because the prior probabilities P(j/cn) are calculated only once and the Tot_Prob vector is obtained from an intermediate step while computing the Prior_Prob matrix as follows:

First the conditional probability for each input data point is calculated using eq (4.2) for every 

j = 1 to N and a matrix Cond is obtained as follows:
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Every column of the above matrix is multiplied by the prior probability of the corresponding component to obtain the matrix Weighted_Cond below:
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Every element of Tot_Prob vector is obtained by summing all the elements of the corresponding row of the Weighted_Cond matrix. Next the Prior_Prob matrix is obtained by dividing elements of each row of the Weighted_Cond matrix by the element in the corresponding row of the Tot_Prob vector as follows:
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where every term in the above matrix satisfies eq. (4.9). Thus the above described order of calculation of the Prior_Prob matrix results in fast updating of parameters in the EM algorithm.

As described in Section 4, EM is performed for every model order from M = 1 to 10 and the likelihood for the validation data is calculated each time. The available skin data is split into disjoint training and validation sets whose distributions are as shown in Figs. 23 and 24 respectively. The peak in the likelihood function gives the optimal model order. A third order model gave the peak likelihood for the validation data as evident in  the plot (Fig. 25) of likelihood against model order. The mean points of the three component Gaussian model and the density functions of the three components are shown in Figs. 26 to 29. Note that the plots show scaled values for density functions.

This 3 component Gaussian mixture model (GMM) is used to obtain the skin probability image from an input color image. For the same test image in Fig. 30, the corresponding skin probability image, calculated using the GMM, is shown in Fig. 31. Figs. 32 and 33 show the same series of connected operators applied to the skin probability image obtained using GMM. Fig. 34 shows the final result of segmentation. The segmentation results are also shown for the same test images as before, but using the GMM in obtaining the skin probability image, from Figs. 35 to 40. The false segmentation in Fig. 42 is because of a large skin colored background. In Fig. 44, the algorithm fails to detect one of the faces due to the small size of the face w.r.t the size of the largest face detected (Normalized area operator). Also the middle face, though segmented, has been merged with the skin colored background.   

In general, false detection/segmentation can occur when there are large background regions whose color resembles that of skin. Also a true face may not be detected/segmented by the system when the face is merged with a background object having skin color. The use of the same structuring elements (in the open/close operations) irrespective of the size of face(s) in an input image may cause excessive erosion or dilation of the face component(s) in some cases. This may lead to the rejection of that particular component by one of the shape-based connected operators resulting in a failure of detection/segmentation. The whole algorithm has been implemented and tested in MATLAB using the Image Processing toolbox. The use of standard MATLAB functions for eigen-value and matrix-inverse calculations enabled implementation and testing of the training algorithms within the given time. MATLAB also enabled visualization of data histograms, estimated density functions and the sequence of operations used in the algorithm. Since MATLAB is much slower in terms of computation as compared to the speed achieved in C or C++, the computational time can be improved by coding the algorithm in C or C++. This could not be achieved within the time of submission of this report. The algorithm has been tested on a set of 22 images containing 51 faces. The results are tabulated below:

	Skin Model used
	% true segmentation 


	% false segmentation

	Unimodal Gaussian
	62.74
	9.80

	3 component GMM
	60.78
	7.84


where,

 % true segmentation = (No. of true faces segmented/No. of faces input)*100

% false segmentation = (No. of false segmentations/No. of faces input)*100            

It is observed that though the Gaussian mixture model provides a better approximation to skin color distribution than a unimodal gaussian, the results do not show an improvement in true segmentation performance. It is because the amount of skin data used for training both the models is small here. Hence the skin probability image obtained using the Gaussian mixture model does not show a significant improvement over that obtained using a unimodal Gaussian. But there is improvement in false segmentation rate. This may be because the mixture model is able to distinguish skin and non-skin colors which are close to each other in the chrominance space, better than the unimodal gaussian. Note that the skin probability image obtained using the mixture model is cleaner than that obtained using a single component Gausian, in terms of high probability values for background regions (Figs. 9 and 31). A larger database of skin pixels might bring out a greater difference in the performance using the two different models.

Also, obtaining the skin probability image using a multimodal Gaussian is computationally more expensive than that using a unimodal Gaussian. This is because, for each pixel, the probability density function has to be computed from M components using GMM instead of 1 component for a unimodal Gaussian. Research [7] has shown that given a large database of skin  pixels, a mixture model gives a better approximation of the underlying distribution and a better skin classification performance than a single component model. Hence, usually a compromise is made between classification performance and computational overhead. 

8.
Conclusions and Scope for future work

In this project, an algorithm for detecting and segmenting face(s) in color images with complex backgrounds, has been implemented. A model for human skin color distribution is built using a database of labeled skin pixels. A unimodal Gaussian model and a Gaussian mixture model have been trained using the same database of skin pixels. An automatic constructive algorithm has been followed to determine the optimal number of GMM components required to fit the given data. A skin model, along with a unimodal Gaussian for non-skin background pixels, is used to compute the probability of every pixel in an input color image to represent skin. The gray image containing these scaled probability values for each pixel is called the Skin Probability image. The skin probability image is analyzed using a hierarchy of connected operators to decide the presence of face(s) in the image and segment them. 

Skin color is found to be a powerful feature for isolating potential face candidates. It is also useful for detecting multiple human faces in an image. Skin classification method is independent to scale, resolution and to some degree the orientation of faces in the image. The hierarchy of shape based connected operators used, proved to be a simple but effective criteria for detecting the presence of face(s) in an image.

Building more robust skin and non-skin models using a larger set of data may enhance the performance of the algorithm. Skin classification based on neural networks may prove to be a good alternative. Also if the structuring elements used in open/close operations are chosen adaptively depending on the maximum size of connected components to be analyzed, the algorithm may give a better performance. 
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Fig. 2 Skin pixel database
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Fig. 3 Non-Skin pixel database
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Fig. 4 Distribution of training data
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Fig. 5 Histogram of skin data
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Fig. 6 Non-skin pixel distribution
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Using unimodal gaussian
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Fig. 8 Test image
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Fig. 9 Skin Probability image (using unimodal Gaussian)
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Fig. 10 Opened/Closed image
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Fig. 11 Thresholded image
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Fig. 12 Final segmented image

Segmentation results (Unimodal Gaussian for skin color)
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Fig. 13 Test image 2






Fig. 14 Result 2
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Fig. 15 Test image 3




Fig. 16 Result 3
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Fig. 17 Test image 4




Fig. 18 Result 4
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     Fig. 19 Test image 5



Fig. 20 Result 5

[image: image38.jpg]


     
[image: image39.jpg]






Fig. 21 Test image 6


Fig. 22 Result 6
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Fig. 23 Likelihood for validation data Vs. Model order
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Fig. 24 Location of the mean points of the 3 components of GMM
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Fig. 25 First Gaussian component
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Fig. 26 Second Gaussian component
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Fig. 27 Third Gaussian component

Using Gaussian mixture model
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Fig. 28 Test image
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Fig. 29 Skin Probability image (using Gaussian mixture model)
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Fig. 30 Opened/Closed image
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Fig. 31 Thresholded image
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Fig. 32 Final segmented image

Segmentation results (GMM for skin color)
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Fig. 33 Test image 1
Fig. 34 Result 1
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Fig. 35 Test image 2
Fig. 36 Result 2
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Fig. 37 Test image 3
Fig. 38 Result 3
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Fig. 39 Test image 4
Fig. 40 Result 4
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Fig. 41 Test image 5
Fig. 42 Result 5

Appendix I – C S O observations

	Test Images


	Face
	Skin-NonFace
	NonSkin-NonFace

	
	C
	S 
	O
	C
	S
	O
	C
	S
	O

	Bradpitt.jpg
	0.0371
	0.6507
	1.7143
	
	
	
	
	
	

	
	0.0584
	0.6998
	1.5455
	
	
	
	
	
	

	Banderas.jpg
	0.0387
	0.7764
	1.9844
	
	
	
	
	
	

	Grafr1.jpg 
	0.0587
	0.7283
	1.3182
	0.0767
	0.9684
	0.7895
	
	
	

	
	
	
	
	0.0790
	1.0434
	0.8000
	
	
	

	
	
	
	
	0.0548
	1.0793
	3.2500
	
	
	

	
	
	
	
	0.0828
	1.3333
	1.1667
	
	
	

	Lifes01.jpg
	0.0558
	0.8263
	1.4412
	
	
	
	
	
	

	Children.jpg 
	0.0709
	0.8184
	1.2105
	0.0515
	0.9605
	0.3226
	
	
	

	
	0.0780
	0.9364
	0.7222
	0.0774
	1.1933
	0.5833
	
	
	

	Woman2.jpg
	0.0386
	0.6701
	1.1803
	
	
	
	0.0736
	1.1676
	1.8571

	
	
	
	
	
	
	
	0.0116
	0.4264
	0.3963

	
	
	
	
	
	
	
	0.0851
	1.3611
	1.0000

	Priety1.jpg
	0.0589
	0.6909
	1.7917
	0.0510
	1.1094
	0.6154
	0.0216
	0.5188
	2.2703

	
	0.0800
	0.8533
	1.4400
	
	
	
	0.0537
	0.8128
	2.5556

	Woman1.jpg
	0.0594
	0.8490
	1.5238
	0.0851
	1.3611
	1.0000
	0.0624
	0.7287
	0.8182

	
	
	
	
	
	
	
	0.0782
	1.2161
	0.7000

	
	
	
	
	
	
	
	0.0452
	0.8069
	2.0556

	
	
	
	
	
	
	
	0.0661
	1.2190
	2.1429

	People1.jpg
	0.0501
	0.6289
	1.7647
	
	
	
	0.0425
	0.7952
	0.6957

	
	0.0307
	0.5218
	1.7778
	
	
	
	0.0657
	1.0392
	0.4545

	
	
	
	
	
	
	
	0.0410
	0.7298
	2.0741

	
	
	
	
	
	
	
	0.0711
	1.0451
	1.7778

	
	
	
	
	
	
	
	0.0842
	1.2321
	1.4286

	People2.jpg
	0.0617
	0.7684
	1.1429
	0.0738
	1.1670
	0.5000
	0.0240
	0.4396
	1.4603

	
	0.0337
	0.6980
	0.9483
	
	
	
	0.0051
	0.4229
	0.4542

	Misunr1.jpg
	0.0303
	0.6759
	1.7714
	
	
	
	
	
	

	Oldwoman.jpg
	0.0663
	0.7457
	1.4800
	0.0850
	0.8415
	0.9091
	0.0242
	0.5015
	0.6184

	
	
	
	
	
	
	
	0.0670
	0.9385
	0.6000

	
	
	
	
	
	
	
	0.0285
	0.4978
	0.6444

	
	
	
	
	
	
	
	0.0458
	0.7263
	0.6207

	
	
	
	
	
	
	
	0.0172
	0.5422
	0.7364

	Misunr5.jpg
	0.0844
	0.8528
	1.5000
	0.0794
	0.7895
	1.0625
	
	
	

	
	0.0750
	0.8368
	1.6364
	0.0663
	0.7410
	1.7333
	
	
	

	
	
	
	
	0.0704
	0.9309
	1.6000
	
	
	

	
	
	
	
	0.0670
	0.8195
	1.1875
	
	
	

	Tvkid.jpg
	0.0314
	0.7281
	0.8519
	0.0828
	1.3333
	0.8571
	0.0587
	0.6595
	1.1154

	
	
	
	
	
	
	
	0.0296
	0.7655
	0.8364

	
	
	
	
	
	
	
	0.0260
	0.5526
	0.9104


Appendix II – Normalized area observations

	Test Images
	   Normalized Area

	
	True Detection(each row indicates the value for one of the faces in the image on the left column)
	False Detection(these are the values for components that were falsely detected as faces before using the Norm area operator)

	Misunr5.jpg
	0.6789
	0.0409

	
	1.0000
	

	Priety1.jpg
	1.0000
	0.4603

	
	0.8509
	0.1177

	
	
	0.3244

	
	
	0.0632

	Bradpitt.jpg
	1.0000
	

	
	0.8002
	

	Grafr1.jpg
	1.0000
	0.1331

	Children.jpg
	0.8547
	0.0640

	
	1.0000
	

	People2.jpg
	0.8371
	0.0855

	
	
	0.2528

	
	
	1.0000

	Geenadavis.jpg
	1.0000
	0.2803

	Grant.jpg
	1.0000
	0.0278

	Aditi.jpg
	1.0000
	

	Misunr4.jpg
	1.0000
	0.0744

	
	0.8457
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