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APPENDIX A
PROOF OF THEOREM 1 AND PROPOSITION 1

We first derive the upper bound of LR(y,a’,x) for all
z,r’ € X, y € Y when eLIP holds. If a mechanism M
satisfies e-LIP, we have Vo € X,y € V:

S » 4 ()

< < (1
Py x (y|z)
The privacy metric can be further expressed as
P wex Prix(yla)Px (')
Py x(ylz)
Dwrza Pyix (yl2') Px (2')
=Px(z) + =22 ()
x() Py x (y|z)
=Px(z) + Z LR(y, 2", x) Px (z").
z'#x

Bounding the leakage of LDP is equivalent to deriving the
maximal value of LR(y,2’, z) over all z, 2’ € X, y € ), such
that (2) is bounded by [e~¢, e€].

Note that LR(y,z’,2") = 1; LR(y,2',x) = 1

- R(y.z.27)°
LR(y,z',z) = %, Vj € X. Then, the constraints in

(1) can be expressed as (3).
Dividing the i-th row by LR(y,1,i) yields (4). De-

note W(y) = Px(1) + LR(y,2,1)Px(2) + - +
LR(y, |X|,1)Px(]X|). Using these, (3) can be rewritten as
follows:
e <W(y) <e,
e LR(5,2,1) <W(y) < eLR(y,2,1),

®)

e “LR(y, |X],1) <W(y) < e“LR(y, [X], 1).

It is worth noting that, the problem of bounding the leakage
of LDP is equivalent to finding the maximum of the ratio of
LR(y,z,1)/LR(y,2’,1) such that (5) is satisfied, which can
also be expressed as the form in Theorem 1.

We next derive the loose bound presented in Proposi-
tion 1. For an arbitrary, fixed ¢y’ € Y, denote zf =
argmaxLR(y’,z,1) and z; = argminlR(y/,z,1), then

xT

Vy’me Y, there is:
e LRy, z;,1) < W(y') < e“LR(y, 27, 1). 6)
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It is readily seen that the maximum value of
LR(y',2’, z) can be expressed as: max, , ex LR(Y, 2", z) =
LR(y, 2%, 2}) = tEEZi’;,S Divide (6) by LR(y/, 2, 1) and
denote W'(y') = W(y')/LR(y’,z;,1), which is shown in
(7). Then, (6) becomes:

— LR(yvx 71) 10
57U<W < 5.
Ry, 1)~ W)=

For the first inequality, we have:

676 LR(yl’$u7 ) LR(y "l:u7]‘)

<
LR(y/7xl7 ) LR(y xl71)

(1= Px(a1)) + Px (),

which implies that when e~ ¢ — 1+ Px (z}) > 0:

LR(y 7xu>1) < PX(x?)
LR(y',zf,1) = e7¢ =14 Px(x}) ~

e —1+ Pmin .
®)
Then, divide (6) by LR(y’,z},1), and denoting W*(y’) as
W (y")/LR(y, z%,1), then W*(y’) becomes (9).
Therefore, (6)/LR(y', x}, 1) yields the following:

LRy, 2z, 1)
e T
LR(y', 27, 1)
For the second inequality, we have

o LR, 2 1) LRy, 27, 1)
LR(y',z3,1) — LR(y, =%, 1)

e <WH(y) <

(1= Px(xy)) + Px(z3,),

(10
which implies:
LR(yvxual)Se _1+PX(xu) € _1+Pmin. (11)
LR(y 755[ ) 1) PX (IZ) Pmin
Combining (8) and (11) we have
eé -1 + PIIllIl mm
LR ) < mi
(yv Tyys l)—mln{ Pmin _ _1+Pm1n
(12)
Comparing the two bounds in (12), we have
ee_]-"_Pmin_ Pmin
Pmin e_6_1_|'P)I‘1'1in
_(676 -1 + ]Dmin)(e6 -1 + Pmin) - (Pmin)2
Pmin(e_6 -1 + Pmin)
(1 = Ppin)(2 —€°—e79)
= <0. 13
]Dmin(67E -1 + Pmin) - ( )
To this end, (12) can be simplified as:
-1 Pmin
LRy, o, a) < &+ Lmin, (14)

Pmin
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e © < Px(1) + LR(y,2,1)Px(2) + ... + LR(y, [ X[, 1) Px (|X]) <
¢ < LR(y,1,2)Px (1) + Px(2) + ... + LR(y, | X, 2) Px (|X]) < e .
e <LR(y, 1, X Px (1) + LR(y, 2, [X[)Px (2) + ... + Px (|X]) < e
Py (1) LRy, 73, 1) LR(y/, ], 1)
W' (y') = W Py(zk) + .. Px(x)) + ———"2Px(|X]). 7
W) S Ry ) TR 1) X e D R gy P @
Px(1) LR(y', 27, 1) LR(y', |X], 1)
W) = o + .. Px()) + ... 57— Px (2]) + 5~ Px(|X]).
V)T Ry g T Ry ) YD TRy O ®
From our prior work in [32], we know that LR(y/, %, x}) < = Px(x) + (1 — Px(x))
. We can also compare our new result with the new bound < Pain + €(1 = Puin). (18)
of (14) as follows: -
€ — 14 P oo (6 = 1)(1 = Puin — Paine®) Similarly, the left hand side of (17) is upper bounded by
_ e —
P Pri ’ 1
min min (19)

which implies when € > In (1 PP min ) ¢ =TEPmin j5 3 tighter
bound than e?¢, otherwise, €€ is s a tighter bound

Note that LR(y 2k, 2f) < min{e®, %} can be
applied to all ¥’ € ), which means,

max

€ — 14 Py
LR(y, 2, z) < min {626, €+mm}'
z,x’ €EX,yey

Pmin
We next show e-LDP implies In (P, + €€(1 — Ppin))-LIP.

Suppose a mechanism M satisfies ¢-LDP, then Vz,z’ € X,
y € ), then we have:

Py x (ylr) .

15
Py x (ylz') — ()

Our goal is to find a bound ¢ for the leakage of LIP, such
that (15) is satisfied. Using Bayes rule, we have:

Py (y) ¢
rexyey Py x (ylz) Py x (y|z) = (10
PY\X(Z/W) < a7

mEX yey Py( )

When ¢-LDP holds, the left hand side of (16) can be further
simplified as follows:

Y wrex Pyix (yla') Px (o)
Py x (y|z)
_ Pyix(yle) Px (@) + 3240, Prix (yl2') Px (2)
B Py x(y|x)
> wrza Prix(yla’) Px (2')
PY\X(Z‘JW’)

+ Z ECPX

r#x’

= Px(.’E) +

<PX

Pmin + 676(1 - Pmin) ’
Therefore, we have the following

e { Px(x) PX|Y(~’CZI)}
reEX,Yyey Px‘y(a?klj)’ P)((a?)

S max {Pmin + 36(1 - Pmin)
(@)

1
’ Pmin + 6_6(1 - Pmin)}

Pmm +e (]- - Pmin); (20)

where in step (), Prin +€(1 — Ppin) i8 no smaller than (19),
ie.,
1
Pmin -
) Pmin+e_6<1_Pmin)

o (1 — Pmin)Pmin(eE —|— 6_6 — 2)

B Pmin + 676(1 - Pmin)
This completes the proof of the statement in Propo-

sition that if a mechanism satisfies e¢-LDP, it satisfies
In (Ppin + €°(1 — Pin))-LIP.

Pmin —+ 66(1 —

> 0.

APPENDIX B
PROOF OF THEOREM 2

When e-LDP holds, from (18), the leakage under BP-LIP
can is upper bounded by
Px(x) 4+ e (1 — Px(z)),

which is upper bounded by

o (P40 (o)

T Pez}

= mmb PIl;ﬁnJre 1-— HllIlb Pf;’;n>,
PeczY Pep?
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where minP%?

min

= Min, ey pe gty Px(z). Conversely, from
(14), we have

e — 1+ Px(x)
LRy 20, 27) € ——F——~——
UREME Pe(@)
Notice that, for any fixed prior P,
e — 1+ Px(x) e — 1+ Puin
LR < = .
0 atoa) < mag { S 1T -

For uncertain prior case, the leakage under any prior within
@j’g’ must be bounded, then we have

ef—1+ Pmin
Pmin

bp
e —1+max P

bp )
max Pmm

LR(y', 2%, 2f) < min {

bp
where max P\ = maxpecgz, mmze v Px ().

Combined with the bound of 2¢, we have that

when e-BP-LIP holds, the maximum LR(y,z’,2) <
min {26, %}. This completes the proof of
Theorem 2. -

APPENDIX C
PROOF OF THEOREM 3

(1) LIP v.s. DI: When e-LIP holds, the privacy leakage under
DI can be expressed as:

Py x (y|z) Px () Py (y) Px (z)e’
Py x(ylz')Px(z') = Py(y)Px(2")e¢
2e Px (2)
PX(QT/)

< 626+D00 (P) ]

For the other direction, when e-DI holds, we have Vz,z’ € X:

Py x(ylz)Px () <
Py x(yla)Px (') =

which implies
Py x(y|z)

S ee-&—DoQ(P)'
Py x (y|z')
For the metric of LIP:
Py(y) )+ Z Py x (ylo") Px (z")
Pyx(ylz) Py x (ylz)

l;éil)
< Px(z) + [1 — Px(x)]eTP=®
S Pmin + [1 - Pmin]ee+Doo(P)-
(2) LIP v.s. MIP: When e-LIP is satisfied, by Bayes rule, we
have that Vx,y € X:
— PX Y(xv y)
e /0 el 21
Px () Py (y)
Substituting (21) into the definition of mutual information,

we get:
Z PX7Y(x7y) =€
reX,yey

where ZrGX,yGy Pxy(z,y) =1
(3) LIP v.s. MIL: The local maximal leakage between X
and Y is defined as:

X:;Y)=1 P; .
Lai(X;Y) nzrglea? vx (y]z)

yey
When e-LIP holds, we have:

max Py|x (ylz) < Py (y)e,
which further implies:
LuL(X;Y) <e
This completes the proof of Theorem 3.

APPENDIX D
PROOFS OF LEMMA 1

Using Bayes rule, we have
Px(z) _ Pr(y) _ Yaex Px(@)Pyix(ylz)
Pxy(zly)  Pyix(ylz) Py |x (ylz)

(22)
The first three properties mentioned in Lemma 1 are
straightforward and the proof is omitted for brevity. We
focus on presenting the proof of post-processing and linkage
properties.
Post-processing: For X — Y — Z that forms a Markov
chain, we have the following set of steps:

Px|z(z]2)
Px (z)

P )P
IZ X\Y |y Y\Z(y|)

Lup(X;2) =

max |In
TEX ,2EZ

= max
T€EX ,2EZ

= max

PX\Y(IHJ)
TeEX ,2EZ )

Px (x
P
< max |In——= X‘Y( zly)
TEX YEZ Px ()

= Lup(X;Y).

Linkage: We know that LIP is a symmetric privacy measure,
e., Lup(X;Y) = Lup(Y;X) (ie., the privacy measure
remains unchanged when swapping the roles of the released
output and the sensitive input). Suppose we have S - X — Y
forms a Markov chain. If we swap the roles of S and Y, we
have Y — X — S forms a Markov chain. Then, using the
post-processing property we get the following:

Lup(Y;X) > Lup(Y;9)
= Lup(X;Y) > Lp(S;Y), (due to symmetry of LIP).
Note that if the latent variable S is independent of X, then

the leakage L11p(S;Y) = 0. We prove this as follows:
Pspy (sly) ‘
Ps(s)

Py s(yls)
Py (y)
> Pyix (ylz) Px|s(z]s)
>e Pyix (ylz) Px ()

Lup(S;Y)= sup |In

sES,yeyY

= sup |ln
seS,yey

= sup |ln
seS,yey
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Therefore, Liip(S;Y) = 0 when Py |g(z|s) = Px(z), ie.,
X and S are independent. This completes the proof of the
Lemma.

APPENDIX E
PROOF OF LEMMA 2

In this Section, we prove the modular property of LIP for
the continuous case. The discrete case can be derived in a
similar manner. W.L.O.G., we prove the case for two mixed
distributions, i.e., K = 2. Now, consider a prior mixture
distribution fx as follows:

[x(w) = a1 fi(x) + az fo(z), (23)

where «; € [0,1] and oy + g = 1. The marginal distribution
of the mechanism output Y is obtained as

v (y) Z/fX,Y(CUay)dl"

_ / Fyix W) o fi (@) + az fo()] do

- / frix W) fa (2)dz + oz / Frix (o) () da

= a191(y) + a292(y), (24

where g;(y) is the marginal distribution of the output mecha-
nism Y averaged on f;(x).
Therefore, we have

Pry, (Y €S,) = /GS fy (y)dy
Y Y

= PI‘g1 (Y S Sy) + o PI“92 (Y S Sy), 25)

where Pr, (Y € §,) = nyS gi(y)dy is taken over the
randomness of distribution g;.

We know that the mechanism M satisfies (e,0)-LIP for
each prior f;(x), i.e.,

Pry,, (Y € 8y)

< e Pry(Y €8,|X €8,) +
Pr,, (Y €S,)<e

Prm(Y € §y1X € Sy) + 5, (26)
where Pry(Y € §y|X € S,) is taken over the randomness
of the perturbation mechanism M. Plugging (26) into (25)
proves the first result of Lemma 2, i.e.,

Pry, (Y €S8,)) <ePrpy(Y e§|X eS,)+0 27
The other direction can be proved using similar arguments,
thus completing the proof of the Lemma.

APPENDIX F
PROOF OF THEOREM 4

We simplify the expression of leakage after n queries as
follows:

Px(x)
Pxyp(zly?)

_ Pyr(yy)

Py ix(yilo)

~ 2wex Pypix (v |2') Px (')

a H;'l=1 PYiIX(yz'\x)

~ Ywex =1 Pryx(y;l2") Px ()

- T2 Pyix (vilz)

)+ Z HPY|X (yil2") Px (x )
Py, x (yilz)

x'#xi=1

:PX

Using the property that if a mechanism satisfies e-LIP, it
%}-LDR we have:

+ZHPY|X (yilz") Px (')

satisfies min 4 2¢, In

o 2z im1 Py, x (yi|w)
: e’k —14+ Py
<Py (CC) 4 Z 6Zk:1 m1n{2ek,ln W}PX (ZE,)
z'#x
n 3 ek —14+ Py
:PX (.1?) + ezkzl mln{Qek,ln Poim }(1 . PX (m>)

min

. €k —14+-P;
n e
> mln{QEk,ln Pim“‘}(

Spmin+e 1*Pmin)-

Similarly, we can derive a lower bound on the leakage as
follows:
P, min T €

min

! i €k —14P, ;
n e
- Zk:l mln{Qek,ln P7M}(

1 — Puyin)-
Thus the maximum leakage is bounded by:

€k —1+P,

n : e +Pmin

E ming 2¢eg,ln —————min }
k=1 { ks Pmin (

In max {Pmin +e 1 — Puin)

1

i €k —14+P
- 22':1 mln{Qék,ln epierm}(

min

;
Pmin+€ 1_Pmin)
n . ek —1+ P iy
—In {Pmin + ezkzl mm{?e;mln W} (1 _ Prnin)} .

This completes the proof of the Theorem.

APPENDIX G
PROOF OF LEMMA 3

For any arbitrary pmf P on X, it can be verified that

1
Pz(m)§P1($)+§||P1—P2||17VCU€X- (28)

This follows from the following fact

1
5\\P1 = Pofl1 = max|Py(S) —
> |P1(S) —

Py (S)|

P2 (S)].

Using the above we also have:

(29)

1
§HP1 —Png > |P1<.7,‘) —Pg(.%‘)‘,V.’IJ e X.
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Therefore, we have

PQ(.T)

< max
Py (z)

< max () + 5Py — Polly
@ Py(x)

[P1—Pals
2P (x)

[P1—Pofly 4o ..
2P

min

:max1+
=1+

Similarly, we can show that

Py(x) [Py — Pl 4
<
B <1 e 5.

min

Combining these bounds we have

X(Pl(x) Py(z)
]32(33)7 Pl(l‘)

) S max(él, 52)

Also,

max (Pl(f) P2($)> 2min(ﬂ(az) PQ(x))

Py(x)’ Pr(x)

> min(L/o,1/82) = s

Now we have the following upper bound on P}(,Q)(y):

Py(a')
~ Py(z)

< max(d1, d2) ZP1 Py|X(y|x)

P (y) =3 2P (2 Py x (y]a)

= max(6, 52)13;1)(;/).

Also, Pl(/z)(y) can be lower bounded as

RP0) =3 R ) Pl
1 , ,
= mzpl(x )Py x (y|z')
——PA()

- maX(51,52) Y

Dividing the above equation by Py |x (y|x) on both sides, we

get the following:

1 Py _ )
max(01,02)  Pyx(ylz) ~ Pyx(ylx)
P2 (y) P (y)

S max(dl, 62) X

Now, we have the following:

o 7 ) st
Pyix(yle)” PP (y)

PP (y)  Pyix(ylz)

< max(d1,d2) X max ,
= max(h, 02} (PYX(?JW P (y)

Therefore, by taking In(-) and sup,c y ,y for both sides, we
have

(2)
sup In |max ( Py () , Py|)2((y|l')> (32)
CEX YEY Pyix(ylz)" PP (y)

< In [max(d1, 62)]
p P
4+ sup In |max < v () , Y|()1()(y|$)> .
TEX,YEY Py x (ylr) Py (y)
Hence, we arrive at the following bound:
Lip(M(P1),Ps) <In[max(dy,d2)] + Lup(M(P1),Py).

Similarly, we can show that,
Lup(M(P1),Py) > —In[max(d1,92)] + Lup(M(P1), P1).
We can further simplify the term max(dy,d2) as follows:

[P1—Palls
2min [Pl , P?

min? mll’l]

max(él, (52) =1+

(@) Drvp, p,)
min [PL. , P2, ]

min? min

(:b) TV(P1,P2)

14 —PLPe)
C

where (a) follows from the fact that Dry(P1,P3) = ||P1 —
P31, while in (b), we defined ¢ as ¢ = min [Pmm,Pgnn]
This completes the proof of Lemma 3.

APPENDIX H
PROOF OF COROLLARY 3

It was shown in [1] under the plug-in estimator defined in:

n

R 1
Px(z) 2 - Z Lis—a}s (33)

i=1
the ¢, distance between Px and Py is upper bounded by
- 2
Dy, (Px, Px) <4/ ~(1X] = nf), 34)

w.p. 1 — (. Therefore, by using the results from Lemma 3, we
have

Dy, (Px, P 1 /2
(14 2aPePON (0 L 21X -mp) ),
2c 2¢V n
w.p. 1 — 3. This completes the proof of the Corollary.

APPENDIX I
PROOF OF PROPOSITION 2

The likelihood fy|x can be expressed as follows:

frix(yle) = Ad(y —z) + (1 = X fx(y).

Using the above, we can compute the following probability:

//fx ) fy|x (y|z)dzdy

- / / Fx(@) Dy — 2) + (1 — A) fx (9)] dady
S, JS

Z/S Ayes 1 fx(y) + (1 -

—APr(Y €5,N8,) +(1-N)Pr(X €8,)Pr(Y €8,).
(35)

Pr(Y €S, X €S,)

M fx(y) Pr(X € S,)] dy
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The marginal distribution fy is obtained as follows

fy(y) = Mx)+ 1 =N fx(y)
= fx(y),

which means under the sampling mechanism, the marginal
probability of Y is identical to that of X. Then, from (35) we
have

Pr(Y e §,|1X € S,) (36)

=APr(X eS| X €8,)+(1-NPr(Y €S,). 37

Note that the value of the conditional probability of Pr(X €
Sy|X € S;) is between [0, 1], which means (36) is bounded
by

[(1=XN)Pr(Y €S), A+ (1-NPr(Y € S,)].
Observe that, the definition of (e, §)-LIP can be expressed as

e “(Pr(Y € 8§y)—0) <Pr(Y € §y|X € S:) <ef(Pr(Y € §y)+9).

(38)
A sufficient condition of (¢, d)-LIP is the following:
e ‘Pr(YeS)—e < (1-NPr(Yes,), (39)
A+ 1 -=NPr(Y eS8, <ePr(Y eS,)+ed. (40
From (39), we have
de €
A<l—e 4+ ————.
=T Yhyes)
A sufficient condition is
de €
A< i l—e*+————=1—e"“4de "
Seives,y) ¢ TRy es,) ¢ toe

Thus, we have A < 1 — e~ ¢ + de™ . From (40), we have
) < (ef=1)Pr(Y €S,) + de°
- 1-Pr(Y €S,) ’
which is monotonically decreasing with Pr(Y" € S,). There-
fore, in order to satisfy (40), we pick A as
(e =1)Pr(Y € Sy) + de€
1-Pr(Y €S,)
Combining with the result from (39), we get
A < min{de,1 —e" €4 de”}.

A<  min = de".

T Pr(YESy)

This completes the proof of the Proposition.

APPENDIX J
PROOF OF PROPOSITION 3

For any 0 <~ <1 and two distributions f and g, we have

-y = /y (F@) — v9(u))dy

= / (f(y) —vg9(y))dy

{v:f(y)=>v9(y)}

+/ (f(y) —vg(y))dy

{y:f(¥)<vg(y)}
=E, — - = d
(fllg) — /{ e (o) = 2 )y
—£,(fll9) - | (9(y) — = F(9))dy
{y:9(v)>F(v)/~} v

= E,(fllg) = vEx (9]l )-

A={y:y<ytU{y:y>uyu}

Fig. 1: Feasible regions for the quadratic equation, y;, y,, are
the roots of the equation for o1 > 0s.

€

By setting v = e~ ¢, we have

Eo—(fllg) —e “Eec(g||f) =1—¢€"¢,

which means

Eee (gllf) = e“Be—c(fllg) — € + 1.

By setting f = fy and g = fy)x, this completes the proof of
the Proposition.

APPENDIX K
PROOF OF LEMMA 4

Consider two Gaussian distributions, f = A'(u1,0%) and
g = N (uz,0%) where 01 > 5. Then, we have the following:

E,(1llg) = [ ma -

-/ ((
A={y:f(y)>v9(y)}

v, 0] 9(y)dy
y) —v9(y))dy.

Notice that f(y) > vg(y) when
_ 2 _ 2
(y—p2)® (y—m)® <701>

2 2
205 207

Therefore,
(L1 (e m
20% 20% 0’% 0%

2 2
(E- ) ()=
2 1 2

The solution of this quadratic equation is

. a%ug — a%,ul + 0102\/§

Yu = 2 2 )
01 — 03
2 2
~ —(o3p1 — ofp2 + 0102V B)
Y = 2 2 ’
01 — 03

where,

ag
B =200t~ o (22) 4 - o)
2
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Tyix (ylz) Accept
Y <l <Y <u Y>u
. 1’/@,\{‘ Y

Fig. 2: An illustration for the truncated Laplcian mechanism.

Therefore, by integrating over the defined region A (depicted
in Fig. 1), we have

E.(fllg) = / (F) —vg(y)d

afb) ofoc2)
fe(t) el

This completes the proof of the Lemma.

=)]

APPENDIX L
PROOF OF THEOREM 6

We pick the parameter byp(x) to have the following func-
tional form:

AX
OéPX( )+ﬁe7

where a. and (. are constants given a privacy level e. The
functional form must be chosen carefully to satisfy LIP. Hence,
the context-aware mechanism works as follows in this case:
We pick the noise parameter byp(z) such that we add less to
a high probability instance and vice versa. Now, our goal is
to find the function the parameters of b jp(z), i.e., o and Q..
As the support of the Laplacian mechanism is infinite, the
output of the Laplacian mechanism can have undesired values
(e.g., the value of the output falls outside a certain specified
range). To circumvent this issue, we truncate the output of the
Laplcian mechanism. In this approach, we have a deterministic
mapping to the upper and lower bounds of the output domain,
when the value falls outside (see Fig. 2).
For any arbitrary output y, and any pair x,z’, we have the
following sequence of inequalities:

bLIP( ) Vo € X,

fr(y) _ > frix(yle') Px (2')
Jyx (y|x) Jyix (ylz)
B Do PX(J:’)#)@J%;)‘ dy
- 2b%z)e e dy

ly—a']

_ N b(x) e 2@ dy
o T g
_ » b() ly—a| |y—2a|
= Px(x) -‘rngpx(x ) o(ar) P { ORI }
a b(x) AX
< Px(x)+ Z Px(x )M exp L’(UC)]

2 25
s: Skewness parameter e Privacy level

(a) (b)

Fig. 3: (a): Effect of skewness parameter s on a. for e = 2. (b):
Effect of the privacy parameter € on «. The prior distribution
is Px —{3 2,3,%—5 and s = 0.2.

(@) + ) Px(a))

[aePX(ﬂfl) + 6} e Px (2)+5e
z'#x

aePX($> + /66

where step (a) is due to the output truncation of the Laplace

mechanism. Now, in order to bound the ratio —%) _ v (y) by e€,
) f Y\X(ylm)

we have to satisfy

Pmin+ Z PX(ZJ)

(TR P
o' Fx

QEPX(’I) + Be

On the other hand, we have

vy [AX}
Rty = *Z#PX e"p ()

| QL @) FBe | —acpiays)
2 Px(@)+ 3 Px(ef {aepx<x>+/3je o

x! #x

In order to lower bound YW _
fyx (ylx)

following sufficient condition:

|:OéePX(LE,) + 55:| ei(aePX(I,)ﬁ’ﬁe) N 675.
aePX (1‘) + Be -

by e™¢, we have the

Pmin + Z PX(ZC/)
z'#x

Now, we do a grid search for o, and S, such that the bounds
fy{;ii((z)lx) are satisfied. From the search, we found that [, is
too close to e, therefore we set 5. = €. We pick the maximum
allowable . that satisfies both bounds on fy{ii((y)hc) In Fig. 3
we plot the feasible values of the parameter o... We first show
the impact of the skewness of the prior distribution of Py, as
we see in Fig. 3 (a), for a given privacy level ¢, more skewness
requires more perturbation, i.e., higher values of o, since low
probability instances can potentially leak more information.
We next compare between the denominators of the func-

tional forms in

AX 1
pindep. _ ) In(G=pmin )’ e <In(z )
LIP - AX min .
==, otherwise,
and
AX
bep =—— Ve i
LIP( )= OzePX(a?)—&—e’ €
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Therefore, we have

66_Ijmm
aePx( )+ezln<1_Pmin>
ee_Pmm
= a.P >1 —
a.Px(z) > n(l_Pmm> €
ee_Pmin €
= a.Px(z) >ln(1_Pmm> —ln(e )
N S 1 ‘1 e — Puin y 1
€ n e
@ Px(x) 1— Ppin €€

Therefore, it is sufficient if

*Pmin % 1
_Pmin e .

xln(e
1

This completes the proof of the Theorem.
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The second term in the leakage metric after time n can be
expressed as follows:

_ Pyy (1)

 Pypxp (y7IxT)

_ngexn Pyrixn (y71x7) Pxp (x7)

a [1im1 Prix; (wilwi)

Doxvean L1 Pryix, (yslz;) Pxy (x7)
[T, PY-|X'(yi|xi)

Pxy (xT)
Pxrniyp (X7yT)

e Case 1:
n+e < 2e
=n<e
Dyy(P1,Py)

=1 1+ — <

Og + min(Pmm’ Pr%un) =

Drv(P,P

:>m1n(P1111n’ Pr?un) = thQ)

= Dry(P1, Py) < min(Ppy,, Poi,) (e — 1).
e Case 2:

6_1+]r}1m
n+6§7P1

-1 Pl
77<6 ;rmm_eé(b

:>DTV(P1’ P2) S min(Pr}nn? Pr%un)( - 1)
Combining both bounds, we get the following:
DTV(Plv P2) < mln(‘P&nna Pr?nn)( min(e®) _ 1)

This completes the proof of the Corollary.
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xnAxD i=1 Y| X, yz| 1)

Using the property that if a mechanism satisfies e-LIP, it

satisfies min 4 2¢, In %%}-LDP, we have:

Z H Py, x, (yilZ )PX"(Xl)

Pxn X
v PY|X (yilzs)

KD #AXT i=1

ZZ_I Inin{Zek JIn
n =
<Pxp(x7) + E e

XT#X]

€ k
ek —1+Pk.

min

}Px? (x7)

—14pPk.

ek
Zn: i {2 _’1 - min } _
:PX;L (X?) +e h—1 ming 2eg,In [ (1 _ PX{L (x?))

) ek —14P
Z": mln{Zek,ln 7‘“‘“}
<Pm1n k=1 Plin (1 — Pmm)
where Pyt = minxf’EX" PX{' (X?), Prlrgnn =

minge v PX,:(x). This completes the proof of the Corollary.
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We prov1de spemal cases: First, it can be readily verified
and € > 1/2. We

next compare txﬁe bound on LIP leakage with the ones for

et =1+ Py, 1 —1
that 2¢ < ——=7—=in when P ;, < 357

LDP as follows:

Z H PY|X yz\%)Px"(Xﬂ_



