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Abstract—In a cognitive radio network (CRN), spectrum
opportunities should be efficiently utilized through careful co-
ordination between cognitive radio (CR) users. In this paper, we
formulate the coordinated channel access as a joint power/rate
control and channel assignment optimization problem, with the
objective of maximizing the sum-rate achieved by all CRs over
all channels. The problem is formulated under a generalized
multi-level spectrum opportunity framework, which reflects the
microscopic spatial opportunity available to CRs. A centralized
polynomial-time approximate algorithm to the problem is devel-
oped. We prove the algorithm’s correctness and show its accuracy
through numerical examples.

I. INTRODUCTION

Cognitive radio networks (CRNs) have recently received
a substantial amount of interest as a means of improving
spectrum utilization. Aiming at opening up the under-utilized
sectors of the licensed spectrum for secondary reuse, cognitive
radios (CRs) can dynamically access a channel, provided
that their communications do not cause harmful interference
to the licensed users of that channel (a.k.a., the primary
radios (PRs)). The operation of a CRN needs to address two
essential problems: (1) discovery of spectrum opportunities,
i.e., idle channels that can be used by CRs, and (2) efficient
reuse of such opportunities. While numerous studies have
been dedicated to the first problem based on channel sensing
techniques, the second problem remains a challenge in a multi-
CR environment. This is because different CRs may sense
the same channel and determine it to be available. Therefore,
channel access needs to be carefully coordinated between these
CRs to avoid collisions and more importantly, ensure efficient
utilization of the spectrum opportunity from a network-wide
point of view.

In this work, we study the coordinated channel access
problem between CRs by formulating it as a joint power/rate
control and channel assignment optimization problem. Given
the available channels at different CRs, we need to specify
for each CR which channels it should transmit on and what
powers and rates it should use on these channels. In contrast
to previous work that aims at maximizing the information-
theoretic capacity of the system, in this work our objective is
to maximize the sum-rate achieved by each CR. Unlike the
information-theoretic capacity that is defined as a logarithmic
function of the received signal-to-interference-plus-noise ratio
(SINR), the rate in our setup depends on the PHY-layer
implementation. In other words, our problem has a wider

scope and can be applied to any arbitrarily given rate-SINR
relationship.

Coexistence between PRs and CRs in the same system also
gives rise to a new structure for our problem. Two new types of
interference need to be accounted for: PR-to-CR interference
and CR-to-PR interference. The latter is more critical and
should be constrained, because it directly influences PRs’
operation. For each CR and each channel, we adopt a power
mask to describe the maximum transmission power the CR can
use without causing unacceptable interference to neighboring
PRs. By nature, this power mask is multi-level. For example,
consider the scenario in Figure 1, where two PR links (a → b
and c → d) and one CR link (CR1 → CR2) exist in the
same vicinity and share the same frequency channel. CR1 can
transmit as far as its received power at the closest active PR
receiver is smaller than the PR’s interference tolerance, for
which we assume a small value for all the PRs. So depending
on the status (ON/OFF) of the PR links, CR1’s power mask
takes one of three levels: (PR’s interference tolerance)/h1b

(Level 1), (PR’s interference tolerance)/h1d (Level 2), and
Pmax (Level 3, the full power supported by the CR’s battery),
where hij is the channel gain between nodes i and j, and the
circles denote the interference ranges of various levels. Note
that this multi-level structure is a generalization of the widely-
used binary structure, whereby the power mask is 0 if any of
the PR neighbors is active, or Pmax if none of its PR neighbors
is active. We realize that this multi-level structure reflects the
microscopic spatial opportunity for CRs, and can be potentially
exploited to increase the CRN’s throughput. So we attempt
to accommodate this general form of spectrum opportunity
in our optimization. Consequently, our formulation becomes
more complicated, because now the same channel may present
different levels of availability to different CRs.

The multi-level structure of the power mask makes the
widely-used SINR-based approximation unapplicable to our
problem. For example, in many existing power/rate control
and channel assignment problems, a convex formulation is
obtained through the capacity approximation log(1+SINR) ≈
SINR if SINR ¿ 1 (low-SINR regime, e.g., see [9]) or
log(1 + SINR) ≈ log(SINR) if SINR À 1 (high-SINR
regime, e.g., see [11]). However, now a CR is expected to
operate over a wide range (low-, mid-, and high-) of SINR
regimes over time due to the multiple levels of the power
mask. Even at a time instance, different CRs may be operating
in different SINR regimes. Therefore, those approximation
techniques adopted separately for low- and high-SINR regimes
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Fig. 1. An example of the multi-level spectrum opportunity.

are no longer appropriate here. A new SINR-independent
treatment is needed for the problem.

The contributions of this work are as follows. We first
show that the joint power/rate control and channel assignment
problem can be formulated as a mixed integer nonlinear
programming (MINLP) problem, which is known to be NP-
hard. By exploiting the discrete set of rates supported by the
CR on each channel, we transform this MINLP to a binary
linear programming (BLP) problem that only contains binary
variables and linear objective function and constraints. This
transformation applies to any given rate-SINR relationship. We
then develop a centralized polynomial-time Linear Program-
ming with Sequential Fixing (LPSF) approximate algorithm
for the BLP. This algorithm is based on iteratively solving a
series of linear programming problems and sequentially fixing
the variables to either 1 or 0 in each iteration. In contrast
to other sequential-fixing-based algorithms (e.g., [3]), this
algorithm guarantees finding of a feasible solution. We prove
the correctness of our algorithm. Its accuracy is then verified
through simulations. Results show that the performance gap
between the approximate and exact solutions is less than 10%.

The rest of this paper is organized as follows. We review
the related work in Section II. We describe the models and
formulate the optimization problem in Section III. The trans-
formation to BLP formulation and the centralized algorithm
are presented in Section IV. Simulations and discussion are
provided in Section V, and we conclude the work in Sec-
tion VI.

II. RELATED WORK

Much of the related work is based on the binary-type spec-
trum opportunity. Early works provide collision-free channel
assignment for CR nodes given a set of available channels at
each node. This problem can be described as an interference-
graph vertex-coloring problem [15]. To obtain a fast solution,
various distributed approximations were proposed, which are
based on observing local interference patterns [14], local
bargaining [1], or on coordinations between CR nodes that aim
at maximizing some system utility [2]. Because of the graph-
theoretic nature of these algorithms, they take transmission
power as input rather than output, and thus are not applicable
to power/rate control problems.

The second body of work considers the sensing/channel
access decision-making process from a single CR’s view-
point. This is also termed MAC-layer sensing. Existing works
include the partially observable Markov decision process
(POMDP) model [13], the constrained Markov decision pro-
cesses (CMDPs) model [12], and the optimal stopping-rule

models [5]. Assuming a semi-Markov process for PR traffic,
Kim and Shin [6] proposed a sensing-period adaptation algo-
rithm that maximizes the discovery of spectrum opportunities
and minimizes the delay in finding an available channel. Based
on a similar PR traffic model, the authors in [4] studied a
dynamic access scheme subject to a constraint on the CR-
to-PR violation rate, but only for a system of one PRN and
one CR link. The coordinated use of spectrum opportunities
at neighboring CRs has not been considered in these works,
and collisions between CR transmissions are resolved using
standard CSMA/CA techniques. Such treatment leads to non-
optimal performance from a network’s viewpoint.

The third type of work simplifies the problem by restricting
the treatment to CR nodes only. So the CR-to-PR and PR-to-
CR interferences do not appear in their formulation. Within
this category, Hou et al. [3] considered the joint optimization
of spectrum, scheduling, and routing in a multi-hop software-
defined-radio (SDR) network. Yi and Hou [7] [8] studied the
joint optimization of power control, scheduling, and routing
for a multi-hop SDR network based on a logarithmic rate-
SINR relationship assumption.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a distributed (ad hoc) CRN that coexists with
M legacy (fixed spectrum) PRNs over a finite area. PRN m,
m = 1, . . . , M , is licensed to operate over its own frequency
channel of bandwidth Bm. In reality, a PRN may occupy more
than one frequency channel. Such a network can be easily
captured in our model by using multiple (virtual) PRNs that
operate over different channels.

Let the number of CR links in the system be N . A CR
link refers to a pair of CR sender and a CR receiver. For
CR link i, we denote the sender and the receiver by S(i)
and D(i), respectively. A CR link can transmit over multiple
non-contiguous channels simultaneously. Let the transmission
power on channel m be P

(m)
i . To avoid unacceptable CR-to-

PR interference, this transmission power must be constrained
below certain power mask P̂

(m)
i . The value of P̂

(m)
i is related

to the status of neighboring PRs and thus changes over time.
For now, we assume that the value of P̂

(m)
i s, i = 1, . . . , N and

m = 1, . . . , M , are given in each snapshot as input parameters
of the joint power/rate control and channel assignment prob-
lem. The calculation of P̂

(m)
i is considered in our technical

report [10].
We stick to the protocol model for the collisions between

CRs. We say that CR links i and j are interfering links on
channel m if P̂

(m)
i hS(i)D(j) > PI,CR or P̂

(m)
j hS(j)D(i) >

PI,CR, where hS(i)D(j) and hS(j)D(i) are the cross-link chan-
nel gains of the two links, and PI,CR is a small fixed value,
denoting the sensitivity of the CR receiver. Any received
power below PI,CR can be deemed as ignorable in terms of
interference. We assume that an exclusive channel occupancy
policy is used to resolve collision between CRs: For any two
interfering CR links on channel m, only one of them can
access the channel at any given time.

Treating interference as noise, the rate of CR link i on



channel m is given by

R
(m)
i = Bmf


 P

(m)
i h

(m)
i

q
(m)
D(i) + N0


 (1)

where f is any arbitrary rate-SINR function decided by the
PHY-layer implementation, h

(m)
i is the channel gain of link i

on channel m, q
(m)
D(i) is the received interference over channel

m at D(i), and N0 is the AWGN. Because an exclusive
channel occupancy policy is used, the interference q

(m)
D(i) only

comes from active co-channel PRs and can be measured by
the CR receiver D(i) on line.

For i = 1, . . . , N and m = 1, . . . , M , define variables

x
(m)
i

def=
{

1, if channel m is used by CR link i, i.e., R
(m)
i > 0

0, otherwise
(2)

Our objective is to maximize the sum of rate of all CR links
over all channels in current snapshot, i.e.,

maximize
N∑

i=1

M∑
m=1

x
(m)
i R

(m)
i (3)

where the maximization is to be carried out with respect to
x

(m)
i ’s and R

(m)
i ’s.

A CR link i should satisfy the following constraints:
C1: CR-to-PR constraint: The transmission power of link i

on channel m should not exceed the power mask P̂
(m)
i . From

(1), this constraint can be written in terms of R
(m)
i as

1

h
(m)
i

(q(m)
D(i) + N0)f−1(r(m)

i ) ≤ P̂
(m)
i , m = 1, . . . , M (4)

where f−1 is the inverse function of f , and r
(m)
i = R

(m)
i

Bm
is

the spectrum efficiency of link i on channel m.
C2: Power supply constraint: The sum of the transmission
powers over all channels should not exceed the maximum
power provided by the battery, i.e.,

M∑
m=1

1

h
(m)
i

(q
(m)

D(i) + N0)f
−1(r

(m)
i ) ≤ Pmax,i. (5)

C3: CR-to-CR collision constraint: If channel m is being
used by CR link i, then it cannot be used by another CR link
that interferes with link i on channel m, and vice versa:

x
(m)
i + x

(m)
j ≤ 1, ∀j ∈ I

(m)
i (6)

where I
(m)
i =

{
j : j 6= i, P̂

(m)
i h

(m)
S(i)D(j) > PI,CR

}
∪{

j : j 6= i, P̂
(m)
j h

(m)
S(j)D(i) > PI,CR

}
is the set of interfering

CR links of link i on channel m.
C1 to C3 are the basic constraints that apply to all CRNs.

Additional constraints may exist depending on the CR’s PHY-
layer implementation, e.g., see [10]. For simplicity, we only
include C1 to C3 to our formulation in this paper.

IV. SOLUTIONS

A. Transformation to BLP

An observation of the objective function (3) and the con-
straints C1-C3 shows that this formulation constitutes a mixed
integer nonlinear programming (MINLP) problem. The solu-
tion to such a problem is NP-hard, in general. To make this
formulation more amenable for further processing, we exploit
the fact that actual communication systems only support a
finite set of discrete transmission rates on each channel.
Denote this set of rates by U = {0, u1, u2, . . . , uK} (in
b/s/Hz), where 0 < u1 < . . . < uK . Define γk

def= f−1(uk)
for k = 1, . . . ,K; γk is the received symbol energy to
interference plus noise density ratio (ES/I0) required to
support the kth rate under the power-rate relationship defined
by (1). Let C

(m)
i

def= 1

h
(m)
i

(
q
(m)
D(i) + N0

)
for i = 1, . . . , N and

m = 1, . . . , M . C
(m)
i is a known quantity for each CR link

on each channel. We further define a new variable y
(m)
k,i for

all k = 1, . . . , K, i = 1, . . . , N , and m = 1, . . . , M :

y
(m)
k,i

def
=

{
1, if link i is transmitting on channel m using rate uk

0, otherwise.
(7)

In addition, we add the following constraint on y
(m)
k,i :

K∑

k=1

y
(m)
k,i ≤ 1. (8)

which accounts for the fact that a link can use at most one
rate on a given channel at a time. It is easy to show that the
following relation holds:

x
(m)
i =

K∑

k=1

y
(m)
k,i . (9)

Similarly, we can rewrite the spectrum efficiency r
(m)
i in

terms of y
(m)
k,i and uk:

r
(m)
i =

K∑

k=1

uky
(m)
k,i . (10)

Substituting (9) and (10) into (3) through (6), we get the fol-
lowing equivalent formulation to the original MINLP problem:

maximize
∑N

i=1

∑M
m=1

∑K
k=1 Bmuky

(m)
k,i

such that
C̃1 : C

(m)
i

∑K
k=1 γky

(m)
k,i ≤ P̂

(m)
i

C̃2 :
∑m

m=1 C
(m)
i

∑K
k=1 γky

(m)
k,i ≤ Pmax,i

C̃3 :
∑K

k=1 y
(m)
k,i +

∑K
k=1 y

(m)
k,j ≤ 1, ∀j ∈ I

(m)
i

(11)
where the maximization is w.r.t. the y

(m)
k,i ’s.

An examination of (11) shows that the former MINLP
problem has been transformed into a binary linear program
(BLP) that contains only binary variables and linear objective
function and constraints. A nice property of (11) is that the rate
levels uk, k = 1, . . . , K, and the corresponding γk’s are fed
into the BLP formulation as tuples (uk, γk). In other words,
the BLP formulation does not rely on the specific functional
relationship between uk and γk, and thus can accommodate
any arbitrary rate-power relation (e.g., a staircase-like function
that characterizes practical multi-rate systems).



B. LPSF Centralized Algorithm
A BLP is a combinatorial problem. Its solution, in general,

is NP-hard. A typical algorithm to approximately solve this
problem is the so-called branch-and-bound algorithm, whose
worst-case time complexity is exponential.

Instead of employing a branch-and-bound algorithm, we de-
velop polynomial-time approximate algorithms by exploiting
the special structure of the problem. An observation of (11)
indicates that if we relax y

(m)
k,i ’s from their binary values and

allow them to take real values between 0 and 1, then the
formulation becomes a linear program (LP) that is solvable in
polynomial time. In addition, the constraint C̃3 dictates that if
for some m, k, and i, y

(m)
k,i = 1, then y

(m)
h,i = 0 for all h 6= k

and y
(m)
l,j = 0 for all j ∈ I

(m)
i and 1 ≤ l ≤ K. In other words,

a strong dependence exists between the y
(m)
k,i ’s that belong to

the same interfering CR link set. The main idea behind our fast
approximate solution is to fix the values of y

(m)
k,i ’s sequentially

through solving a series of relaxed LP problems, with at least
one y

(m)
k,i finalized to a binary value at each iteration.

Our approximation algorithm, called LP with sequential
fixing (LPSF), is described in Table I. In the first iteration,
we append the constraint 0 ≤ y

(m)
k,i ≤ 1 to (11) and relax all

y
(m)
k,i ’s to real values between 0 and 1. We refer to the resulting

formulation as LP(1), which must have a feasible solution
according to Lemma 1. The solution to LP(1) is an upper
bound on the optimal solution to (11), because the feasibility
region of the BLP is a subset of that of LP(1). However, the
solution of LP(1) is, in general, not a feasible solution to the
original BLP problem, because the y

(m)
k,i ’s can now take values

between 0 and 1. Among all y
(m)
k,i ’s, we pick the one that has

the largest value, and we denote this y
(m)
k,i by Y

(m)
k,i for ease of

identification. We set Y
(m)
k,i = 1. Accordingly, all y

(m)
h,i ’s for

h 6= k and all y
(m)
l,j ’s for j ∈ I

(m)
i and 1 ≤ l ≤ K must now

be set to 0. Substituting these y
(m)
k,i ’s with their fixed values

into the LP(1), we get a new LP, called LP(2), whose variables
do not include those that have been fixed after the execution
of LP(1) (such variables have been replaced by their binary
values). A feasibility check is then conducted on LP(2). If the
feasible region of LP(2) is empty, that means the first fixing in
this iteration, i.e., Y

(m)
k,i = 1, is not correct. So we reset Y

(m)
k,i

to 0. This change means all those variables that belong to the
same interfering CR link set as Y

(m)
k,i and whose values have

been fixed to 0 in this iteration must now become variables.
The revised fix, i.e. Y

(m)
k,i = 0, is then substituted into LP(1),

giving rise to LP(3). LP(3) must be feasible (see Lemma 2). In
a nutshell, at this point we either have a feasible LP(2) or have
a feasible LP(3). In either case, the new feasible formulation
is renamed as LP(1) and a new iteration starts following the
same process above. The process is repeated until all y

(m)
k,i ’s

are set to either 0 or 1. The final rate allocation of each link
on each channel is calculated according to (10).

Note that a similar algorithm was suggested in [3] to solve
a different problem. From a methodology’s standpoint, the
major difference between our algorithm and the one in [3]
is that there is no guarantee that an feasible solution can be
found at the termination of the algorithm in [3]. Our algorithm

STEP 0: Get LP(1) by appending 0 ≤ y
(m)
k,i ≤ 1 to (11) and relaxing

all variables to real values.
STEP 1: Solve LP(1).
STEP 2: Pick Y

(m)
k,i ⇐ max

{
yn

l,j , l ∈ (1, . . . , K), j ∈ (1, . . . , N),

n ∈ (1, . . . , M)}.
STEP 3: Get LP(2) by substituting Y

(m)
k,i = 1, y

(m)
h,i = 0 for h 6= k

and y
(m)
l,j = 0 for ∀j ∈ Ii and 1 ≤ l ≤ K into LP(1).

STEP 4: If LP(2) is feasible
LP(1) ⇐ LP(2)

else
Get LP(3) by substituting Y

(m)
k,i = 0 into LP(1).

LP(1) ⇐ LP(3)

End-if
STEP 5: If all variables are fixed, then Terminate;

otherwise go to STEP 1.

TABLE I
LPSF ALGORITHM.

improves upon [3] by adding a revised-fixing component
when any intermediate fixing leads to infeasibility, such that
a feasible solution can always be found. We now prove the
correctness of our algorithm.
Theorem 1: The LPSF algorithm can correctly determine the
binary values of all y

(m)
k,i ’s in no more than NMK iterations.

The proof of Theorem 1 is based on the following lemmas.
Lemma 1: In the first iteration, LP(1) has an optimal solution.

Proof: It is easy to show that at least y
(m)
ki = 0 for all

k = 1, . . . ,K, i = 1, . . . , N , and m = 1, . . . ,M , is a feasible
solution to the original BLP. Thus it is also a feasible solution
to LP(1). Note that all variables are bounded between [0, 1],
therefore Lemma 1 holds.
Lemma 2: In the first iteration, LP(3) has an optimal solution.

Proof: According to Lemma 1, LP(1) in the first iteration
must have optimal solution, therefore Y

(m)
ki ≥ 0 must holds

before the fix. When Y
(m)
ki is fixed to 0 to get LP(3), its value is

changed from no less than 0 to 0, leading to a non-increase in
the required transmission power. So no R.H.S. of C1’ through
C3’ could be violated by this non-increasing action on the
L.H.S. of C1’ through C3’. Therefore LP(3) must have at least
one feasible solution. Noting that all variables are bounded
between [0, 1], Lemma 2 holds.
Lemma 3: LP(1) and LP(3) have optimal solutions in all
iterations.

Proof: The situation in the first iteration is proved by
Lemma 1 and Lemma 2. In the second iteration, LP(1) comes
from either a feasible LP(2) or a feasible LP(3) of the first
iteration. So LP(1) must be feasible in the second iteration.
Given LP(1) is feasible in the second iteration, the rational used
in proving Lemma 2 also applies here to prove the feasibility
of LP(3) in the second iteration. This induction repeats itself
in all iterations. Noting that all variables are bounded between
[0, 1], Lemma 3 holds.

The proof of Theorem 1 is straightforward: Iteratively
applying Lemmas 1 to 3, it is guaranteed that in each iteration
at least one y

(m)
ki is fixed to either 0 or 1 and a new feasible

LP(1) is generated for the next iteration. For the last iteration, if
fixing y

(m)
ki to 1 does not lead to a feasible BLP solution, then
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changing its value to 0 must lead to a feasible BLP solution
(due to the same reason as in the proof of Lemma 2).

Based on Theorem 1, it is easy to show that the time
complexity of the LPSF algorithm is bounded by the com-
plexity of the LP solver times NMK. Because a LP solver
has polynomial complexity, the complexity of the LPSF is
also polynomial. In addition, the performance gap between the
approximate solution and the actual optimum can be explicitly
evaluated by comparing against the upper bound of the optimal
solution, which is the the solution to LP(1) in the first iteration.
Lemma 1 has guaranteed the existence of this upper bound.
We will shortly show by simulation that this gap is very small
(below 10%), and in most cases it is zero.

V. SIMULATION RESULTS

We consider a 1000×1000 meter2 region, where 5 PRNs (5
channels) coexist with 5 CR links. The numbers of PRs over
each channel are 25, 10, 15, 20, and 25, respectively. Each
channel has 1 MHz of bandwidth. We assume the following
rate-SINR relationship: R

(m)
i = Bm log2(1 + SINR/8) and

r
(m)
i ∈ {0, 1/2, 1, 3/2, 2} bits/second/Hz for all i and m.

The locations of the PR and CR transmitters and receivers
are randomly selected. A path loss model with exponent of
4 is assumed for the channel gain between any two points.
We assume the PRs on all channels follow the same 2-state
Markov activity model, i.e., durations of ON/OFF states are
exponentially distributed, with average ON and OFF periods
set to 1 s and 10 s, respectively. The transmission power of a
PR is 500 mW. Pmax for a CR is 1 W. We take the interference
tolerance PI = 2PI,CR = 0.12346 µW. The power masks of
all CRs are calculated periodically according to the SB scheme
described in [10]. A CR is capable of using all 5 channels at
one time. We compare the sum-rate of all CR links achieved
in each reporting period under an exhaustive-search algorithm
that finds the optimal solution and our polynomial-time LPSF
algorithm.

A sample trace of the CRN sum-rate is plotted in Figure 2
for 50 consecutive periods. The upper bound generated in the
first iteration of the LPSF algorithm is also shown. It is clear
that the LPSF algorithm gives near-optimal solutions. In all
cases, these solutions are within 5% from the optimal solution,
and are often optimal. The upper bound provided by the
LPSF algorithm is reasonably tight. In all simulations, the gap

between this bound and the optimal solution does not exceed
10%. So this bound provides a useful reference to evaluate the
accuracy of the approximate solution in large networks when
the optimal solution is computationally difficult to obtain.

VI. CONCLUSIONS

In this paper, we developed a centralized algorithm to solve
the joint power/rate control and channel assignment problem
for the coordinated channel access in CRNs. The problem is
formulated under a multi-level spectrum opportunity frame-
work that reflects the microscopic spatial opportunity available
to CRs. Currently, our work only applies to single-hop ad hoc
CRNs. Our future efforts will address multi-hop environments.
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