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Scaling laws for evaporative cooling in time-dependent optical traps
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We derive scaling laws for the number of atoms, collision rate, and phase-space density as a function of trap
depth for evaporative cooling in an adiabadically lowered optical trap. The results are in excellent agreement
with a Boltzmann equation model and show that very large increases in phase-space density can be obtained
without excessive slowing of the evaporation rate. Predictions are in reasonable agreement with a recent
experiment that achieves Bose-Einstein condensation by evaporation in an optical trap. We also discuss evapo-
ration of fermionic mixtures and explain why Pauli blocking does not strongly inhibit cooling.
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Far-off-resonance optical dipole traps are well known tocorrect scaling laws for adiabatically lowered optical traps,
provide nearly state-independent confining potentials fowhere the trap strength varies in time, we explicitly include
neutral atomg1]. This enables study of systems that cannotthe time-dependent potential and derive scaling laws for the
be stored in magnetic traps, such as stable states of cesiuphase-space density, number, and elastic collision rate as a
atoms or diamagnetic atoms and molecules. Shallow opticgunction of the well depth. Results are obtained for a fixed
traps have been used to confine multiple spin-state spind@rge ration of trap depthU to thermal energkT, to lowest
Bose condensat¢g]. Optical traps also are likely to play an order in the small parameter expf), using a harmonic os-
important role in studies of cold neutral fermions, where specillator approximation. Forp=U/kT=10, which is typical
cific pairs of states are required to achieve superfluidityfor evaporation in optical traps, the scaling laws show that by
[3-5]. A degenerate Fermi gas has been produced by direddwering the well depth by a factor of 100, the phase-space
evaporation of a two-state mixture 8% in a magnetic trap, density can be increased by a factor of 400. The correspond-
using a dual radio-frequency-knife methp@l. Sympathetic ing elastic collision rate is reduced by a factor of 24. By
cooling of fermionic °Li to degeneracy also has been including the effects of loss arising from background gas
achieved by using mixtures ofLi with bosonic “Li in a  collisions, we obtain reasonable agreement with the results
magnetic traf7,8]. However, for both®Li and %K, explo- ~ of Barrettet al. [11].
ration of superfluidity will require an optical trap. Generally, It is well known that the evaporation rate of a gas from an
the procedure for producing an optically trapped degenerateptical trap of fixed depth stagnates as the temperature drops
gas has been to obtain a degenerate gas by optical coolihg4l- At low temperatures, the number of colliding pairs of
and evaporation in a magnetic trap, followed by transfer tcatoms with enough energy for one to leave the trap is deter-
an optical trap. However, direct production of a degeneraténined by the tail of the Boltzmann distribution. Hence, the
gas in an optical trap would greatly simplify many experi- vaporation rate is suppressed by a factor expkT). For
ments, and has been explored for many years without sudJ/kT> 10, the evaporation slows dramatically, and it is nec-

cess[9,10]. essary to force evaporation by adiabatically lowering the trap
Recently, a Bose-Einstein condensa&EC) has been depth[15].

produced by Barrettt al, using forced evaporation 6fRb The optical trapping potential can be written generally as

in a CG, laser trap that is continuously lowergtl]. In those

experiments, an extremely high initial spatial density is ob- Ux,H)=-U(t)g(x), @

tained, producing a very large elastic-scattering rate as WeII
as a high initial phase-space density. Hence, the trap depth(
can be lowered rapidly, producing a BEC in a few seconds?
In this paper, we describe a scaling law model of force
evaporation in a continuously lowered optical trap. The scal-
ing law follows from a simple energy evolution equation for
the trapped atoms, which includes the energy loss arisin@I
both from evaporation and from adiabatic lowering of the
trap potential. Previous derivations of scaling laws for
evaporation in magnetic traps have not explicitly included
the time-dependent potenti@l2]. This is appropriate for
evaporation in traps with a constant potential where the
radio-frequency-knife method is employed to lower the trap equation withkT<U, we find a=(7—5)/(y—4) for any
threshold. Since the trap strength does not change, the ertentlaI that is harmonic near the minimufa6]. The
plicit time-dependence of the potential has little effect, asehergy-loss rate arising from evaporation is thisiU
shown by modeling evaporation from a magnetic trap with a+ akT), whereN is the rate at which atoms evaporate from
time-dependent evaporation threshfil@]. To determine the the trap. In addition, as the trap depth is lowered adiabati-

hereg(x) describes the trap shape agdx|— %)— 0 with
0)=1. We assume that evaporation is carried out at low
dIemperatures near stagnation, where the average thermal en-
ergykT<U.

To determine how the number of trapped atoscolli-

on ratey, and phase-space densitycale as the trap depth

is lowered, we first estimate the rate of energy loss from
the trap, neglecting atom loss arising from background gas
collisions. Taking the zero of energy to be at the bottom of
the trap, evaporating atoms will have an average enkrgy
+akT, where 0<a<1 [14]. From the s-wave Boltzmann
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cally at a rateJ, an energy change arises from the change iroms such asLi, where the scattering length is anomalously
potential energy. SinckT<U, the atoms vibrate near the large, evaporation is still rapid and the background collision
trap bottom in an approximately harmonic potential, whereinduced loss can be minimized despite the reduced collision
E/2 is the average potential energy. The potential energy therate.

changes at a rateU(/U)E/Z and the total energ§ obeys the The scaling laws are derived neglecting background gas
approximate evolution equation collisions. To include background gas collisions, a loss rate
_ term —I'p4E is included in Eq.(2) and N is replaced by
- UE Neyap Where the evaporation raté,,,,=N+1I",;N. Then
= [ pr evap bg ’
E=N(U+akT)+ Uz 2 one can show that the scaling laws for the number, collision

rate, and phase-space density versus trap depth are reduced

In the classical limit,E=3NKT is the total energy of the py a factor exptTygt), wheret is the time over which the
trapped gas so th&=3NkT+3NkT. Then, the contribu- trap depth is lowered. Different exponential factors can be
tion to T from evaporation is proportional thi(U+akT  derived for the scaling laws versus number. Equatinis
—3KkT). Hence, the cooling rate is proportional to the differ- /S0 readily modified to include effects of residual heating.
ence between the average energy carried away per particle Although the derivation of the scaling laws does not ex-
(=U+akT) and the average thermal energkT3 as it  Plicitly include the time dependence of the trap depth, main-
should be. taining a constant value af specifies the time dependence

Solving Eq.(2) with a fixed value olJ/kT= 7, the num-  U(t), which follows from the evaporation rate. To lowest

ber of trapped atoms is found to vary with trap depth as  Order in expf-7), and neglecting background gas collisions,
we obtain from the s-wave Boltzmann equat{dd],

, 3) N=—2(n—4)exg—7)yN. (6)

Differentiating Eq.(3) and writing y/y; in terms ofU/U;,
we obtain

N,

N U 3/[2(n" —3)]
( Ui)

wherei denotes the initial condition a=0, N=N(t), and
U=U(t). Here,n' =np+a=n+(n—5)/(n—4). The corre-

sponding phase-space density in the classical regime is u(t) t\ 2" =3)7'
=N(hv)3/(kT)3, wherev= p(t)= /U is the geometric mean o= ;) : (7)
of the trap oscillation frequencies. Using E8), it is easy to '
show thatp=p(t) scales with trap depth and number as  where the time constantis given by
p (U3 - =3)] N7 4 1 2 4 8
o\ U =N : (4) 7—37](77 ) eXp(— 7). (8)

Equation(4) shows that forp= 10, p/p;=(U;/U)*3 For an  Including background gas collisions changes-[1
initial phase-space density qfi=3x10 %, lowering the —exp(=Iyd)Thg in Eq. (7). Equation(8) shows that the
well depth by a factor of 84 yieldp=1. For an energy- lowering rate scales with the initial collision raje. Accord-
independent scattering cross section, the elastic collision raieg to Eq. (7), the rate of decrease of the well depth de-

y=v(t)«Nv3/(kT) scales with trap depth as creases with time as the collision rate, and hence, the evapo-
ration rate declines. The initial elastic collision rate for a
y U\ 720" =3)] single state Bose gas in a harmonic potentialjigsec )
o U_.> : (5 =47N;Mar¥(KkT;), whereN,; is the total number of atoms

initially in the trap, T; the initial temperaturey=8a?, and
and is reduced by a factor of 21 for a factor of 84 reductionv; is the initial mean trap oscillation frequency in Hz. For a
in well depth whenp=10. two-state 50-50 mixture of fermions with the same mass,

An important feature of Eq(4) is that the increase in scattering length, total number, and trap frequencies as in the
phase-space density with decreasing number is identical {8ose case, the rate is reduced by a net factor of 4.
that obtained using a radio-frequency-knife method with a The scaling law predictions are valid for both bosons and
trap depth to thermal energy ratio of. This is a conse- fermions in the classical regime, where the effects of quan-
quence of the adiabatic energy loss, which ensures that tgm statistics can be neglected. We have compared the scal-
phase-space density does not change as the trap depthing law predictions to a detailed Boltzmann equation model
lowered whenN=0. Hence, the phase-space change arisef9r evaporation of a two-state mixture of fermiorfici in a
only from evaporation as in the radio-frequency-knife Single gaussian beam optical trap. Assuming sufficient ergod-
method. For an optical trap witly=10, p/p;=(N;/N)8  ICity, the evolution of a Io_w-tempgrature trapped gas in a
and a modest decrease in number leads to a great increasdiff€-dependent potential is described by teave Boltz-
phase-space density. Unlike evaporation from a fixed wellMann equatiofi13,14), which we write in the forn{18],
however, the collision rate for an energy-independent elastic o (et) sf(et) (df)

coll

cross section decreases as/\(J;)%%° for =10, and run- +(U(e b)) =|—
away evaporation is not achievgtli7]. Nevertheless, for at- Je dt

051403-2

P (€)



RAPID COMMUNICATIONS

SCALING LAWS FOR EVAPORATIVE COOLING IN . .. PHYSICAL REVIEW A64 051403R)

l I I and 9.6. Usingp=10 in the scaling laws, we obtain nearly
perfect fits to the Boltzmann model up to a phase-space den-
sity of 1, where the effects of Fermi statistics become impor-
tant. For exponential lowering of the trap depth, wheres
only approximately constant, the scaling law fits are in rea-
sonable agreement with the Boltzmann model, although the
fits are not quite as good as for constant
For completeness, we describe briefly why Fermi statis-
tics does not severely suppress the efficiency of evaporative
cooling. WhenT<Tg the collision rate within the trap is
reduced tol' =y (T/Tg)2<7y., wherey,, is the classical
collision rate evaluated at the Fermi surfagdeis the tem-
0.001 ' ' ' ' | perature, andl is the Fermi temperaturgl9]. The factor
0 5 100 150 200 250 300 (T/Tg)? is a consequence of Pauli blocking, which forbids
Trap Depth (uK) collisions into occupied energy states, as observed recently
[20]. However, in evaporation, one of the final states is es-
sentially unoccupied, since it is outside the trap. Hence, the
evaporation rate is suppressed by oh ¢, i.e.,

Direction of Time

-

[=}
N

0.01

Phase Space Density

FIG. 1. Phase-space densigach statevs trap depth. S-wave
Boltzmann equation modeldots; scaling law predictiongsolid
line). The time varies from 0 to 36 sec.

T U—kTE
The left-hand side of EQ9) describes the adiabatic evolu- Leyap™ VC'T_FeXF{ T kT )
tion of the gas in the time-dependent potential. Physically, in

a time At, the occupation numbefi(e,t) changes adiabati- The exponential factor describes the high-energy tail of the
cally according tof (e,t+At)=f(e—At(dH/dt),t). Hamil-  Fermi distribution, which is responsible for evaporation
ton’s equations requiredH/dt)=(U(e,t)), where the angu- when the trap deptlU>kT. This is essentially the same
lar brackets denote the ergodic average of the time rate dactor that appears in the evaporation of a classical gas. Since
change of the potenti@l 8]. The right-hand side of Eq9) is  the heat capacity also scales®Ir [21], the efficiency of
a Boltzmann collision integral, which redistributes the levelevaporative cooling in lowering the temperature is not seri-
occupation number§(e,t) including Fermi statistic§18]. ously compromised in a two-component Fermi gas, although
A comparison of the results of the scaling laws and thethe sensitivity to residual heating is increased. Further, the
Boltzmann equation predictions for a two-state mixture ofcollision rate within the trap is always fast
®Li fermions is shown in Figs. 1 and 2. The scattering lengthcompared to the evaporation rate wher-kTe>kT, since
is taken to bea= —300a,, which can be obtained by apply- T/T> exd —(U—kTg) /kT] so that rethermalization is faster
ing a magnetic field of 300 G. The trap parameters are athan evaporation. This picture explains why Pauli blocking
follows: N;=4x 1 (total), »;=1300 Hz, T;=30 uK, U, does not appear to strongly affect the rate of decrease of
=300 uK, i.e., 7=10 andl',4=0.003 s1. The well depth T/Tr in a recent theoretical model of evaporation for a two-
is lowered according to Eq.7) with =10 using a time component Fermi ga22].
constantr of 1.2 seconds, as predicted by E8). With these It is interesting to compare the scaling law predictions
parameters, the Boltzmann model yieldékT between 10 with the experimental BEC results obtained by Baregtal.
[11]. We takeN; to be the stagnation value after 1 second
| | | | , [11], about 1/3 of the maximum number loaded. In the actual
experiments, the gas is not given time to stagnate before the
trap lowering begins, but one expects that most atoms are
lost in a small fraction of a second before the well depth
changes appreciably, since the evaporation slows exponen-
tially as the temperature drops to less than 1/10 of the well
depth in the first second. For the final conditions, we use the
data for a laser power d?=350 mW, near the transition
between the classical and degenerate regimes, where the
Direction of Time scaling law is approximately valid. We use the trap lifetime
- |00 of 6 sec and a lowering time of 2.5 sec to obtain a back-
ground loss factor of exp{I',gt) =exp(—2.5/6)=0.66. The
| | | | | 0 well is assumed to be lowered by a factds/U;
0 50 100 150 200 250 300 = (v¢/v;)?=1/84, based on the measured trap oscillation fre-
Trap Depth (pK) quencies. We takeyzU/sz 10'and give rgsults for the
case where all atoms are in a single hyperfine state. Table |
FIG. 2. Number and collision rate vs trap depth. S-wave Boltz-Shows that the predictions are in good agreement with the
mann equation model: Numbériangles; collision rate(squarek experiments for these reasonable assumptions about the trap
scaling law predictionglines). The time varies from 0 to 36 sec.  parameters.
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TABLE I. Comparison of scaling law predictions with the BEC evolution equation and in the scaling law model is essential,

experiment of Ref[11]. as it accounts for the adiabatic energy loss in the trap, which

= — _ = — is needed to preserve the phase-space density in the absence
Initial conditions Final conditions Predictions of evaporation. Our results show that the phase-space density
»,=1500 Hz =164 Hz mhoptu;ﬁl tra;:_s mc;rizasesd ra;:;\dlty ats the tra{J depthlls Iowe_ltﬁd,
N =6.7% 10° N;=1.8% 16° N;=1.9x 10° when the ratio of trap depth to temperature is large. The

reduction of the elastic collision rate with well depth is miti-

T'iigxﬂllé sec! T’_ng)SSzgl Tiz‘;gosgclfl gated by the large initial spatifl1,23 and phase-space den-
Y= = Y= sities obtainable with optical traps, as well as the large scat-

tering lengths obtainable in some systems. Hence,

evaporation in optical traps appears quite promising as a

means to achieve degeneracy in a variety of atomic and mo-
In conclusion, we have derived simple scaling laws forlecular systems. Finally, we have presented a physical picture

the number, collision rate, and phase-space density as a fungy explain why Pauli blocking does not strongly inhibit cool-

tion of trap depth for atoms in a time-dependent, adiabatiing by evaporation in fermionic mixtures.

cally lowered optical trap operating near stagnation. The in-

clusion of the time-dependent potential in the Boltzmann This research is supported by ARO, NSF, and NASA.
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