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Scaling laws for evaporative cooling in time-dependent optical traps
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~Received 24 July 2001; published 12 October 2001!

We derive scaling laws for the number of atoms, collision rate, and phase-space density as a function of trap
depth for evaporative cooling in an adiabadically lowered optical trap. The results are in excellent agreement
with a Boltzmann equation model and show that very large increases in phase-space density can be obtained
without excessive slowing of the evaporation rate. Predictions are in reasonable agreement with a recent
experiment that achieves Bose-Einstein condensation by evaporation in an optical trap. We also discuss evapo-
ration of fermionic mixtures and explain why Pauli blocking does not strongly inhibit cooling.
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Far-off-resonance optical dipole traps are well known
provide nearly state-independent confining potentials
neutral atoms@1#. This enables study of systems that cann
be stored in magnetic traps, such as stable states of ce
atoms or diamagnetic atoms and molecules. Shallow op
traps have been used to confine multiple spin-state sp
Bose condensates@2#. Optical traps also are likely to play a
important role in studies of cold neutral fermions, where s
cific pairs of states are required to achieve superfluid
@3–5#. A degenerate Fermi gas has been produced by d
evaporation of a two-state mixture of40K in a magnetic trap,
using a dual radio-frequency-knife method@6#. Sympathetic
cooling of fermionic 6Li to degeneracy also has bee
achieved by using mixtures of6Li with bosonic 7Li in a
magnetic trap@7,8#. However, for both6Li and 40K, explo-
ration of superfluidity will require an optical trap. General
the procedure for producing an optically trapped degene
gas has been to obtain a degenerate gas by optical co
and evaporation in a magnetic trap, followed by transfer
an optical trap. However, direct production of a degener
gas in an optical trap would greatly simplify many expe
ments, and has been explored for many years without
cess@9,10#.

Recently, a Bose-Einstein condensate~BEC! has been
produced by Barrettet al., using forced evaporation of87Rb
in a CO2 laser trap that is continuously lowered@11#. In those
experiments, an extremely high initial spatial density is o
tained, producing a very large elastic-scattering rate as
as a high initial phase-space density. Hence, the trap d
can be lowered rapidly, producing a BEC in a few secon

In this paper, we describe a scaling law model of forc
evaporation in a continuously lowered optical trap. The sc
ing law follows from a simple energy evolution equation f
the trapped atoms, which includes the energy loss aris
both from evaporation and from adiabatic lowering of t
trap potential. Previous derivations of scaling laws
evaporation in magnetic traps have not explicitly includ
the time-dependent potential@12#. This is appropriate for
evaporation in traps with a constant potential where
radio-frequency-knife method is employed to lower the tr
threshold. Since the trap strength does not change, the
plicit time-dependence of the potential has little effect,
shown by modeling evaporation from a magnetic trap wit
time-dependent evaporation threshold@13#. To determine the
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correct scaling laws for adiabatically lowered optical trap
where the trap strength varies in time, we explicitly inclu
the time-dependent potential and derive scaling laws for
phase-space density, number, and elastic collision rate
function of the well depth. Results are obtained for a fix
large ratioh of trap depthU to thermal energykT, to lowest
order in the small parameter exp(2h), using a harmonic os-
cillator approximation. Forh5U/kT510, which is typical
for evaporation in optical traps, the scaling laws show that
lowering the well depth by a factor of 100, the phase-sp
density can be increased by a factor of 400. The correspo
ing elastic collision rate is reduced by a factor of 24. B
including the effects of loss arising from background g
collisions, we obtain reasonable agreement with the res
of Barrettet al. @11#.

It is well known that the evaporation rate of a gas from
optical trap of fixed depth stagnates as the temperature d
@14#. At low temperatures, the number of colliding pairs
atoms with enough energy for one to leave the trap is de
mined by the tail of the Boltzmann distribution. Hence, t
evaporation rate is suppressed by a factor exp(2U/kT). For
U/kT.10, the evaporation slows dramatically, and it is ne
essary to force evaporation by adiabatically lowering the t
depth@15#.

The optical trapping potential can be written generally

U~x,t !52U~ t !g~x!, ~1!

whereg(x) describes the trap shape andg(uxu→`)→0 with
g(0)51. We assume that evaporation is carried out at l
temperatures near stagnation, where the average therma
ergy kT!U.

To determine how the number of trapped atomsN, colli-
sion rateg, and phase-space densityr scale as the trap dept
U is lowered, we first estimate the rate of energy loss fr
the trap, neglecting atom loss arising from background
collisions. Taking the zero of energy to be at the bottom
the trap, evaporating atoms will have an average energU
1akT, where 0<a<1 @14#. From the s-wave Boltzmann
equation withkT!U, we find a5(h25)/(h24) for any
potential that is harmonic near the minimum@16#. The
energy-loss rate arising from evaporation is thenṄ(U
1akT), whereṄ is the rate at which atoms evaporate fro
the trap. In addition, as the trap depth is lowered adiab
©2001 The American Physical Society03-1
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cally at a rateU̇, an energy change arises from the change
potential energy. SincekT!U, the atoms vibrate near th
trap bottom in an approximately harmonic potential, whe
E/2 is the average potential energy. The potential energy t
changes at a rate (U̇/U)E/2 and the total energyE obeys the
approximate evolution equation

Ė5Ṅ~U1akT!1
U̇

U

E

2
. ~2!

In the classical limit,E53NkT is the total energy of the
trapped gas so thatĖ53NkṪ13ṄkT. Then, the contribu-
tion to Ṫ from evaporation is proportional toṄ(U1akT
23kT). Hence, the cooling rate is proportional to the diffe
ence between the average energy carried away per pa
(.U1akT) and the average thermal energy 3kT, as it
should be.

Solving Eq.~2! with a fixed value ofU/kT5h, the num-
ber of trapped atoms is found to vary with trap depth as

N

Ni
5S U

Ui
D 3/[2(h823)]

, ~3!

where i denotes the initial condition att50, N5N(t), and
U5U(t). Here,h85h1a5h1(h25)/(h24). The corre-
sponding phase-space density in the classical regimer
5N(hn)3/(kT)3, wheren5n(t)}AU is the geometric mean
of the trap oscillation frequencies. Using Eq.~3!, it is easy to
show thatr5r(t) scales with trap depth and number as

r

r i
5S Ui

U D 3(h824)/[2~h823)]

5S Ni

N D h824

. ~4!

Equation~4! shows that forh510, r/r i5(Ui /U)1.3. For an
initial phase-space density ofr i5331023, lowering the
well depth by a factor of 84 yieldsr51. For an energy-
independent scattering cross section, the elastic collision
g5g(t)}Nn3/(kT) scales with trap depth as

g

g i
5S U

Ui
D h8/[2~h823!]

, ~5!

and is reduced by a factor of 21 for a factor of 84 reduct
in well depth whenh510.

An important feature of Eq.~4! is that the increase in
phase-space density with decreasing number is identica
that obtained using a radio-frequency-knife method with
trap depth to thermal energy ratio ofh. This is a conse-
quence of the adiabatic energy loss, which ensures tha
phase-space density does not change as the trap dep
lowered whenṄ50. Hence, the phase-space change ar
only from evaporation as in the radio-frequency-kn
method. For an optical trap withh510, r/r i5(Ni /N)6.8,
and a modest decrease in number leads to a great increa
phase-space density. Unlike evaporation from a fixed w
however, the collision rate for an energy-independent ela
cross section decreases as (U/Ui)

0.69 for h510, and run-
away evaporation is not achieved@17#. Nevertheless, for at
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oms such as6Li, where the scattering length is anomalous
large, evaporation is still rapid and the background collis
induced loss can be minimized despite the reduced collis
rate.

The scaling laws are derived neglecting background
collisions. To include background gas collisions, a loss r
term 2GbgE is included in Eq.~2! and Ṅ is replaced by
Ṅevap, where the evaporation rateṄevap5Ṅ1GbgN. Then,
one can show that the scaling laws for the number, collis
rate, and phase-space density versus trap depth are red
by a factor exp(2Gbgt), wheret is the time over which the
trap depth is lowered. Different exponential factors can
derived for the scaling laws versus number. Equation~2! is
also readily modified to include effects of residual heatin

Although the derivation of the scaling laws does not e
plicitly include the time dependence of the trap depth, ma
taining a constant value ofh specifies the time dependenc
U(t), which follows from the evaporation rate. To lowe
order in exp(2h), and neglecting background gas collision
we obtain from the s-wave Boltzmann equation@14#,

Ṅ522~h24! exp~2h!g N. ~6!

Differentiating Eq.~3! and writing g/g i in terms ofU/Ui ,
we obtain

U~ t !

Ui
5S 11

t

t D 22(h823)/h8
, ~7!

where the time constantt is given by

1

t
5

2

3
h8~h24! exp~2h!g i . ~8!

Including background gas collisions changest→@1
2exp(2Gbgt)#/Gbg in Eq. ~7!. Equation~8! shows that the
lowering rate scales with the initial collision rateg i . Accord-
ing to Eq. ~7!, the rate of decrease of the well depth d
creases with time as the collision rate, and hence, the ev
ration rate declines. The initial elastic collision rate for
single state Bose gas in a harmonic potential isg i(sec21)
54pNiMsn i

3/(kTi), whereNi is the total number of atoms
initially in the trap,Ti the initial temperature,s58pa2, and
n i is the initial mean trap oscillation frequency in Hz. For
two-state 50-50 mixture of fermions with the same ma
scattering length, total number, and trap frequencies as in
Bose case, the rate is reduced by a net factor of 4.

The scaling law predictions are valid for both bosons a
fermions in the classical regime, where the effects of qu
tum statistics can be neglected. We have compared the
ing law predictions to a detailed Boltzmann equation mo
for evaporation of a two-state mixture of fermionic6Li in a
single gaussian beam optical trap. Assuming sufficient erg
icity, the evolution of a low-temperature trapped gas in
time-dependent potential is described by thes-wave Boltz-
mann equation@13,14#, which we write in the form@18#,

] f ~e,t !

]t
1^U̇~e,t !&

] f ~e,t !

]e
5S d f

dt D
coll

. ~9!
3-2
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The left-hand side of Eq.~9! describes the adiabatic evolu
tion of the gas in the time-dependent potential. Physically
a time Dt, the occupation numberf (e,t) changes adiabati
cally according tof (e,t1Dt)5 f „e2Dt(]H/]t),t…. Hamil-
ton’s equations requirê]H/]t&5^U̇(e,t)&, where the angu-
lar brackets denote the ergodic average of the time rat
change of the potential@18#. The right-hand side of Eq.~9! is
a Boltzmann collision integral, which redistributes the lev
occupation numbersf (e,t) including Fermi statistics@18#.

A comparison of the results of the scaling laws and
Boltzmann equation predictions for a two-state mixture
6Li fermions is shown in Figs. 1 and 2. The scattering len
is taken to bea52300a0, which can be obtained by apply
ing a magnetic field of 300 G. The trap parameters are
follows: Ni543105 ~total!, n i51300 Hz,Ti530 mK, Ui
5300 mK, i.e., h510 andGbg50.003 s21. The well depth
is lowered according to Eq.~7! with h510 using a time
constantt of 1.2 seconds, as predicted by Eq.~8!. With these
parameters, the Boltzmann model yieldsU/kT between 10

FIG. 1. Phase-space density~each state! vs trap depth. S-wave
Boltzmann equation model~dots!; scaling law predictions~solid
line!. The time varies from 0 to 36 sec.

FIG. 2. Number and collision rate vs trap depth. S-wave Bo
mann equation model: Number~triangles!; collision rate~squares!;
scaling law predictions~lines!. The time varies from 0 to 36 sec.
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and 9.6. Usingh510 in the scaling laws, we obtain near
perfect fits to the Boltzmann model up to a phase-space d
sity of 1, where the effects of Fermi statistics become imp
tant. For exponential lowering of the trap depth, whereh is
only approximately constant, the scaling law fits are in re
sonable agreement with the Boltzmann model, although
fits are not quite as good as for constanth.

For completeness, we describe briefly why Fermi sta
tics does not severely suppress the efficiency of evapora
cooling. WhenT!TF the collision rate within the trap is
reduced toG}gcl(T/TF)2!gcl , wheregcl is the classical
collision rate evaluated at the Fermi surface,T is the tem-
perature, andTF is the Fermi temperature@19#. The factor
(T/TF)2 is a consequence of Pauli blocking, which forbi
collisions into occupied energy states, as observed rece
@20#. However, in evaporation, one of the final states is
sentially unoccupied, since it is outside the trap. Hence,
evaporation rate is suppressed by onlyT/TF , i.e.,

Gevap}gcl

T

TF
expS 2

U2kTF

kT D .

The exponential factor describes the high-energy tail of
Fermi distribution, which is responsible for evaporatio
when the trap depthU@kT. This is essentially the sam
factor that appears in the evaporation of a classical gas. S
the heat capacity also scales asT/TF @21#, the efficiency of
evaporative cooling in lowering the temperature is not se
ously compromised in a two-component Fermi gas, althou
the sensitivity to residual heating is increased. Further,
collision rate within the trap is always fas
compared to the evaporation rate whenU2kTF@kT, since
T/TF@ exp@2(U2kTF) /kT# so that rethermalization is faste
than evaporation. This picture explains why Pauli blocki
does not appear to strongly affect the rate of decrease
T/TF in a recent theoretical model of evaporation for a tw
component Fermi gas@22#.

It is interesting to compare the scaling law predictio
with the experimental BEC results obtained by Barrettet al.
@11#. We takeNi to be the stagnation value after 1 seco
@11#, about 1/3 of the maximum number loaded. In the act
experiments, the gas is not given time to stagnate before
trap lowering begins, but one expects that most atoms
lost in a small fraction of a second before the well dep
changes appreciably, since the evaporation slows expo
tially as the temperature drops to less than 1/10 of the w
depth in the first second. For the final conditions, we use
data for a laser power ofP5350 mW, near the transition
between the classical and degenerate regimes, where
scaling law is approximately valid. We use the trap lifetim
of 6 sec and a lowering time of 2.5 sec to obtain a ba
ground loss factor of exp(2Gbgt)5exp(22.5/6)50.66. The
well is assumed to be lowered by a factorU f /Ui
5(n f /n i)

251/84, based on the measured trap oscillation f
quencies. We takeh5U/kT510 and give results for the
case where all atoms are in a single hyperfine state. Tab
shows that the predictions are in good agreement with
experiments for these reasonable assumptions about the
parameters.
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In conclusion, we have derived simple scaling laws
the number, collision rate, and phase-space density as a
tion of trap depth for atoms in a time-dependent, adiab
cally lowered optical trap operating near stagnation. The
clusion of the time-dependent potential in the Boltzma

TABLE I. Comparison of scaling law predictions with the BE
experiment of Ref.@11#.

Initial conditions Final conditions Predictions

n i51500 Hz n f5164 Hz
Ni56.73105 Nf51.83105 Nf51.93105

Ti538 mK Tf5375 nK Tf5450 nK
g i5123103 sec21 g f5300 sec21 g f5372 sec21

r i51/200 r f51.4 r f51.1
e,

et,

.E

.

l,

ee
ib

et
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evolution equation and in the scaling law model is essen
as it accounts for the adiabatic energy loss in the trap, wh
is needed to preserve the phase-space density in the ab
of evaporation. Our results show that the phase-space de
in optical traps increases rapidly as the trap depth is lowe
when the ratio of trap depth to temperature is large. T
reduction of the elastic collision rate with well depth is mi
gated by the large initial spatial@11,23# and phase-space den
sities obtainable with optical traps, as well as the large s
tering lengths obtainable in some systems. Hen
evaporation in optical traps appears quite promising a
means to achieve degeneracy in a variety of atomic and
lecular systems. Finally, we have presented a physical pic
to explain why Pauli blocking does not strongly inhibit coo
ing by evaporation in fermionic mixtures.
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