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Abstract
We present a technique to improve the slow-light performance of a side-coupled integrated
spaced sequence of resonators (SCISSOR) combined with a stimulated Brillouin
scattering (SBS) gain medium in optical fibers. We evaluate device performance of
SCISSOR-only and SCISSOR + SBS systems for different numbers of cascaded resonators
from 1 to 70 using two different data fidelity metrics including eye-opening and mutual
information. A practical system design is demonstrated by analyzing its performance in terms
of fractional delay, power transmission, and data fidelity. We observe that the results from the
two metrics are in good agreement. Based on system optimization under practical resource and
fidelity constraints, the SCISSOR consisting of 70 cascaded resonators provides a fractional
delay of ∼8 with 22 dB attenuation at a signal bit rate of 10 Gbps. The combined optimal
SCISSOR (with 70 resonators) + SBS system provides a improved fractional delay up to ∼17
with unit power transmission under the same constraints.

Keywords: slow-light, optical delay line, stimulated Brillouin scattering (SBS), ring resonator,
mutual information, non-linear optics, group delay, group velocity dispersion
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1. Introduction

Tunable all-optical delay systems that dynamically manipulate
the group velocity of light have received a great deal of
attention for optical information processing applications such
as data buffering and synchronization. Various slow-light
devices, including those based on electromagnetically induced
transparency (EIT) in atomic vapor, stimulated Brillouin and
Raman scattering (SBS and SRS) in optical fibers, and
photonic structures in dielectric material, have been explored
as potential realizations of a practical delay system [1–10].

As for on-chip approaches, coupled resonators or photonic
crystals are promising techniques that would allow easy
integration with other electronics or optical components.
Many recent demonstrations of coupled resonator optical
waveguides (CROW) and a side-coupled integrated spaced
sequence of resonators (SCISSOR) have been designed

and fabricated in compact sizes (∼10 µm2) and with
the possibility of dynamic delay control and large delay–
bandwidth product [2–4]. A more recent analysis from Otey
et al shows that cascaded resonators can even capture light
pulses (i.e. stopped light) by completely compressing the
system bandwidth and that the captured pulse can then be
released [5].

A large fractional delay (equivalent to the delay–
bandwidth product) can be achieved by a chain of resonators.
Unfortunately, these devices suffer a fundamental trade-off
between transmission loss and delay, which potentially limits
the use of large numbers of resonators. For example, a CROW
consisting of six ring resonators demonstrated continuously
controllable fractional delay up to 3 at a signal bit rate (BR) of
10 Gbps and a bit error rate (BER) of 10−9 [2]. Its transmission
loss, however, is 3 dB (i.e. 0.5 dB/ring) and therefore the use
of any additional resonator will increase the BER to higher
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than 10−9. For comparison, Xia et al have demonstrated a
chain of 56 cascaded micro-ring resonators in a side-coupled
configuration using a silicon-on-insulator waveguide. They
achieved a large fractional delay (∼5) at a BR of 10 Gbps and
BER of 10−4 [4]. This high BER is a direct consequence of the
22 dB transmission loss of the device resulting from the use of
a large number of rings.

One possible way of preserving acceptable output signal
quality without sacrificing the delay performance is to use a
Brillouin amplifier. An SBS gain-based delay system could
provide significant signal amplification, and its tunable gain
bandwidth could be increased up to 25 GHz, which allows
high speed data transmission [11–13]. In addition, an optimal
SBS gain system would provide additional fractional delay
of up to 3 [14]. Therefore, combining this system with
cascaded resonators or other photonic resonance structures
seems like a promising method to compensate for their
respective disadvantages while increasing maximum fractional
delay [15–17].

In general, large slow-light delay is accompanied by
substantial group velocity dispersion (GVD) that manifests
itself as signal distortion. The presence of higher-order
GVD terms lead to changes in the pulse shape. Under such
a condition, we require a metric to quantitatively measure
the output data quality along with the delay. A common
measure of communications performance for the propagation
of a pulse train is an eye-diagram. An eye-diagram is
useful for estimating signal distortion via the maximum
eye-opening; and its location represents the delay [17–20].
Neifeld and Lee have presented an alternative metric that uses
Shannon information to estimate the information capacity and
information delay in the presence of noise [21, 22]. In this
paper, we utilize these two metrics to evaluate SCISSOR, SBS,
and SCISSOR + SBS under practical resource and fidelity
constraints. By jointly optimizing the system parameters of the
SCISSOR + SBS system, we determine the maximum fidelity-
constrained fractional delay at a BR of 10 Gbps.

2. Data fidelity metric

The important quantities to consider for evaluating slow-light
system performance are the fractional delay and the received
data fidelity. When a single pulse or a pulse sequence
propagates through the dispersive medium it undergoes GVD.
There are several metrics including the pulse broadening
factor [23, 24], amplitude and phase distortion [10], eye-
opening [17–20], and mutual information [21] that have
been introduced to quantify the slow-light performance. In
what follows, we consider the eye-opening and information-
theoretic metrics.

2.1. Eye-opening metric

An eye-diagram is used to visualize the shape of com-
munications waveforms and it is generated by repetitively
superimposing subsequent traces of a given data stream over
a fixed time interval. The eye-opening (EO) is the maximum
difference between the minimum value of ‘ones’ and the

SL
SL

SL

Figure 1. (a) Channel model of a slow-light delay device. OOK GP
generates a train of Gaussian pulses (GP) modulated via on–off
keying (OOK). (b) Example of slow-light output pulses including
effects of delay, distortion, and noise. Top figures, without distortion;
middle figures, moderate distortion; bottom figures, large distortion
causes ISI.

maximum value of ‘zeros’ at the bit center. The data distortion
(D) can be quantified using the eye-opening and it is defined
as

D = 1 − max(EO). (1)

If a pulse sequence passes through a dispersive medium,
the output signal could be broadened or distorted, and then
D will increase due to the increased intersymbol interfer-
ence (ISI). Note that distortion has a monotonic relationship
with BER, and D = 0.35 indicates a corresponding BER #
10−9, resulting in reliable communication [16, 20].

An eye-opening based delay can be calculated by the
time difference TEO between the input and output eye center
defined when the EO is maximal. The fractional eye-opening
delay (EOD) is defined as the time delay divided by the input
pulsewidth Tp, that is, EOD = TEO/Tp.

2.2. Information-theoretic metric

Information theory was first explored by Shannon, and
information rate has become a standard method to characterize
the quality of a communication channel [25, 26]. Recently, an
information-theoretic metric was introduced using the mutual
information between the slow-light input and output signals,
in order to measure the information-based delay (ID) and
information throughput (IT) [21]. The IT-metric in this
paper is based on the channel model displayed in figure 1(a).
Figure 1(b) shows the examples of a 3 bit output signal
propagated through an arbitrary slow-light channel, which may
include effects of delay, distortion, and noise. The input X
is a binary-valued sequence and it is modulated via on–off
keying (OOK). The slow-light delay system is represented
by the channel operator HSL, where HSL could represent any
kind of delay device. The mutual information (MI) represents
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Figure 2. Application of the information-theoretic analysis to an ideal delay device for the 3 bit transmission (eight possible states).
(a) Example signals at the input (dashed) and output (solid) of the slow-light operator. The input window (IW) along with two candidate
output windows (OW) are shown. (b) Mutual information as a function of OW offset. Note that IT represents the information throughput and
ID represents the information delay.

the quantity of transmitted data, and estimates how much
input information about X is known when the output Y is
observed. Thus, the MI can be defined as I (X; Y ) = H (X) −
H (X |Y ), where H (X) is the entropy of the discrete input
X , representing the a priori uncertainty, and H (X |Y ) is the
conditional entropy after the output is observed [25, 26]. We
assume that the output signal Y is corrupted by additive white
Gaussian noise (AWGN) with zero mean and variance σ 2.
We also assume that the elements xi of a specific n-bit input
sequence X are independent and identically distributed (IID),
leading to a prior probability p(xi) = (1/2)n. Under these
assumptions, the MI can be written as

I (X; Y ) = n +
∫ M∑

i=1

p(xi)p(Y |xi)

× log2
p(Y |xi)p(xi)∑M

j=1 p(x j)p(Y |x j)
dY, (2)

where n is the number of input bits, M = 2n is the number
of possible n-bit input sequences, and p(xi , Y ) is the joint
probability density function (PDF) of xi and Y . The integral
over Y in equation (2) can be solved by the Monte Carlo
simulation with important sampling. Here, p(Y |xi) is the PDF
of Y conditioned on xi that is expressed by the Gaussian PDF:

p(Y |xi) # 1
(2πσ 2)nL

exp
(

− 1
2σ 2

|Y − HSLxi |2
)

, (3)

where L is the number of simulation samples used to represent
a single Gaussian pulse.

Note that the concept of delay is not easily captured
within I (X; Y ). In order to apply I (X; Y ) to the analysis
of slow-light systems, we impose a window structure, which
confines an input pulse sequence within a finite-duration
window [21, 27]. With this approach, we can compute the
MI between X and only that part of Y contained within the
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Figure 3. System parameters for a single micro-ring resonator.

output window (OW) as a function of window offset [21, 22].
Here we use a simple example to describe the IT-metric, let
us first consider an ideal distortion-free delay device with
σ 2 = 0, as shown in figure 2. The 3 bits of Gaussian pulses
with a 50% return-to-zero (RZ) modulation format serve as an
input, and the Gaussian pulse is defined to have field amplitude
E(t) = exp(−(t/THW)2), where THW = Tb/2 is the bit half-
width at 1/e2 intensity and Tb is the bit period. The 50% RZ
modulation denotes that a logical 1 is represented by a pulse
of width 0.5 bits, therefore Tp = Tb/2. In order to compute
the MI for this example of the 3 bit transmission, we consider
all eight possible states (M = 8), as shown in figure 2(a). We
assume that the input bit period Tb = 100 ps and the value
of delay TD = 400 ps. The input signal is fitted within an
input window (IW), and then we can compute the MI between
input X within the IW and only part of Y contained in the OW
for many different OW locations in figures 2(a) and (b). We
observe the values of MI = 3 bit and 1 bit for the two candidate
output windows (OW1 and OW2) at two different values of
window offset = 400 ps and 600 ps, respectively, as shown in
figure 2(b). For this example, when the window offset is the
same as the delay TD, all the input signal information can be

transferred without loss caused by distortion, noise, and energy
leaking outside the window. Thus, the peak value of I (X; Y )
represents the amount of information that can be transmitted
through the slow-light channel; while the location of this peak
provides an information-theoretic measure of delay. Therefore,
we define the peak height as the information throughput (IT)
and the peak location as the information delay (ID) of the SL
device, where the normalized IT is

IT = max{I (X; Y )}
n-bits

, (4)

and this definition will be used throughout the remainder of the
paper.

3. Ring resonators

3.1. Single resonator

For a coupled ring resonator, as shown in figure 3, the output
fields can be related to the input fields through a complex
amplitude transfer function

HRing(ω) = E2(ω)

E1(ω)
= k − a exp(iφ(ω))

1 − ka exp(iφ(ω))
, (5)

where Ei is the complex field amplitude, k is the self-coupling
coefficient (k2 = 1 − ρ2), ρ is a cross-coupling coefficient,
a = exp(−αLR/2) is the round trip amplitude loss of the
resonator, LR is the ring circumference, and α is the total
attenuation coefficient which includes all sources of loss such
as material absorption, bending loss, and scattering loss from
waveguide roughness [3, 4]. The round trip phase shift φ(ω)
in the ring can be represented by φ(ω) = 2πnR LR(ω −ω0)/c,
where nR is the effective index of the ring, c is the speed of
light, and ω0 is the resonance angular frequency.

Figure 4. Lossy resonator characteristics for four values of k = 0.8, 0.9, 0.95, and 0.97: (a) transmission spectra, (b) phase spectra, (c) group
delay, and (d) Gaussian input and delayed output pulses.
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The phase response 'Ring(ω) of the transfer function is ob-
tained by the relation HRing(ω) = |HRing(ω)| exp(j'Ring(ω))

and it is given in terms of k, a, and φ(ω) as follows:

'Ring(ω) = π + φ(ω) + tan−1
[

k sin φ(ω)

a − k cos φ(ω)

]

+ tan−1
[

kasinφ(ω)

1 − ka cos φ(ω)

]
. (6)

Next, we consider the group delay which is a direct
consequence of the amount of phase shift in equation (6) within
the filter passband. It is defined as the negative derivative of
the phase of the transfer function with respect to the angular
frequency:

τRing = −d'Ring(ω)

dω

= − nR LR

c
+ k(k − a cos φ(ω))

a2 − 2ka cos φ(ω) + k2

+ ka(ka − cos φ(ω))

1 − 2ka cos φ(ω) + k2a2
. (7)

Equations (6) and (7) explain the behavior of the
propagated light through the resonator. At resonance, for
k < a, the ring and the waveguide are overcoupled and the
phase shift increases rapidly as a function of angular frequency,
leading to pulse delay [6–9]. On the other hand, for k > a,
they are undercoupled and the phase shift decreases rapidly as a
function of angular frequency, resulting in pulse advancement.
Critical coupling occurs when k = a. Here, the transmission
becomes zero at the resonance frequency as the round trip loss
of the ring is exactly the same as the fractional loss through
the resonance coupling [28]. In our design study, we are
particularly interested in pulse delay, and thus all candidate
systems use overcoupled resonators.

In figure 4, we depict the resonator characteristics for
four different values of k = 0.8, 0.9, 0.95, and 0.97 with
a practical value of attenuation coefficient α = 1 cm−1 and
LR = 150 µm. Using the numerical simulations based
on equations (5)–(7), we calculate and plot the transmission,
phase shift, and group delay spectra in figures 4(a), (b),
and (c), respectively. Corresponding Gaussian input and
delayed output pulses are shown in figure 4(d), where the
input pulsewidth is Tp = 50 ps. A silicon waveguide is
assumed, thus an effective refractive index nR = 3.0 is used.
In figure 4(a), as k approaches the critical value of the round
trip loss a from below, the full width at half depth (FWHD)
of the resonator transmission function becomes narrower and
deeper. This leads to the slope of the phase shift becoming
larger, as shown in figure 4(b), and therefore a larger group
delay is achieved for the larger value of k = 0.97 in figure 4(c).
However, the maximum achievable pulse delay is limited by
the trade-off between the group delay and pulse distortion,
causing oscillation at the pulse rising edge, as shown in
figure 4(d).

Now, let us consider a pulse train at a BR of
10 Gbps rather than a single pulse, where BR = 1/Tb.
Figures 5(a), (b), and (c) present the EO-delay, distortion,
and power throughput (PT), respectively, for a resonator as
a function of k and LR. We define the PT as the ratio of

Figure 5. Single resonator characteristics. (a) Fractional delay (FD),
(b) distortion (D), and (c) power transmission (PT) as a function of k
and LR. The green-dashed line in (a) represents the location of the
critical coupling. The black-dotted line in (b) represents D = 0.35,
and corresponding distortion-constrained FD and PT are also
represented by the same black-dotted lines in figures (a) and (c),
respectively. SL represents the slow-light region and FL represents
the fast-light region.

the propagated output signal power to the input signal power
in the resonator. This numerical simulation is performed by
propagating a 127 bit pseudo-random Gaussian pulse train
with 50% RZ modulation format at a BR of 10 Gbps. Our
computation covers a range of k from 0.94 to 0.99 and LR

from 10 to 250 µm and these ranges are chosen to observe
the ring resonator characteristics. It is interesting to note that
we observe both the slow- and fast-light regimes to the left
and right sides, respectively, of the critical coupling line (green
dashed), in figure 5(a). To increase the delay one can increase k
or LR, but both distortion and energy loss increase at the same
time. For a given value of the maximum distortion constraint
(e.g. D # 0.35) in figure 5(b), we can find many k and LR

pairs that provide the same values of distortion-constrained
EO-delay #0.76 with corresponding PT # 0.67, as observed
in black-dotted lines in figures 5(a) and (c). Therefore, we

5



J. Opt. 12 (2010) 104012 M Lee et al

Figure 6. Side-coupled integral spaced sequence of resonators
(SCISSOR).

will focus on varying k while keeping a fixed practical value
of LR = 150 µm.

3.2. SCISSOR

We now consider a SCISSOR, as shown in figure 6. It
is assumed that the SCISSOR has multiple identical rings
and its transfer function Eout(ω)/Ein(ω) = HSCISSOR(ω) =
(HRing(ω))N , where N is the number of resonators. Figure 7
presents the characteristics of the SCISSOR for four different
numbers of rings (N = 1, 3, 5, and 8) with LR = 150 µm,
α = 1 cm−1, and k = 0.85. Because the phase shift at
resonance for multiple resonators is additive, the magnitude
of the total group delay from a summation of the delays of
all individual ring resonators increases as a function of N .
The FWHD of SCISSOR transmission resonance also becomes
wider than that of a single ring with the resonance transmission
approaching zero. As a result, output pulse power decreases
and the output pulse shape becomes more distorted from the its
original input shape as SCISSOR length N increases, shown in
figure 7(d).

4. Optimal system design study

In this section, we explore optimal system designs for
SCISSOR, SBS, and SCISSOR + SBS. Our approach

is to maximize the delay performance under practical
system resource constraints while maintaining constant data
fidelity [15, 18, 19].

4.1. SCISSOR

We use EO and IT metrics, as described in section 2, to evaluate
the SCISSOR structure. Figure 8 describes the results of the
computations summarizing (1) the EO-delay with associated
D and (2) the information-theoretic delay with associated IT
as a function of N , where three different noise strengths of
σ 2 = 0.2, 0.3, and 0.4 are used for the IT computation.
The EO-based results presented in this paper are based on
propagating a 127 bit pseudo-random pulse train with a RZ
modulation format at a BR = 10 Gbps. For information-based
results, we have utilized 8 bit input sequences with the same
modulation format and BR, and therefore a total 256 (M = 28

states in equation (2)) possible bit patterns are considered. For
each input pattern, we use 106 noise samples to obtain reliable
results by using a Monte Carlo technique. As expected we
found that increasing N increases both the EOD and ID at the
cost of increased distortion. As a result, the normalized IT
values decrease. We observe both EOD and ID yield similar
delay values, as shown in figure 8(a). From figure 8(b), we
see that IT decreases faster for higher noise strength with
increasing N , thus the fidelity of information transmission
decreases with increasing σ 2 because the decreased signal to
noise ratio (SNR) causes information to be lost. Based on D
and IT results for the SCISSOR with N = 4, distortion of D =
0.342 is measured, while three different values of IT = 0.943,
0.873, and 0.812 are computed with corresponding AWGN
levels of σ 2 = 0.2, 0.3, and 0.4, respectively, as shown in
figure 8(b). For the given specific noise level of σ 2 = 0.3, one
can use at most four cascaded resonators while simultaneously
maintaining more than 87% (i.e. IT ! 0.87 or approximately

Figure 7. SCISSOR characteristics for four different numbers of resonators N = 1, 3, 5, and 8: (a) transmission spectra, (b) phase spectra,
(c) group delay, and (d) Gaussian input and delayed output pulses.
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Figure 8. Summary of EO and IT results for SCISSOR with
N = 1–6. (a) EOD and ID for three different values of noise
strength. (b) IT on the left axis and distortion on the right axis. The
system parameters of LR = 150 µm and k = 0.915 are used.

7 out of 8 bits) of the transmitted information. Therefore, we
take the IT constraint IT ! 0.87 for σ 2 = 0.3, to correspond
with distortion constraint D " 0.35.

Next, under the two signal quality constraints (IT ! 0.87
and D " 0.35), we optimize k to maximize EOD and ID for
three different attenuation coefficients α = 0, 1, and 3 cm−1

as a function of N from 1 to 70. The optimal SCISSOR
characteristics using both IT and EO metrics are presented in
figure 9. We note that the results from the two different metrics
provide similar trends. When N = 70, the maximum fractional
delays of approximately 10, 8, and 4 are achieved for α = 0, 1,
and 3 cm−1, respectively, at BR = 10 Gbps. As N increases,
both fidelity-constrained EOD and ID increase; however, early
delay saturation for the highest attenuation value is observed
in figure 9(a). As N increases, k must decrease in order to
increase the effective FWHD so that the system can satisfy the
D and IT constraints. For the same reason, optimal k at higher
attenuation is smaller than that at smaller attenuation, as shown
in figure 9(c). Note that these trends are also explained by the
group delay relation of equation (7). The transferred energy
in a lossy SCISSOR decreases exponentially because of the
induced loss, shown in figure 9(b), and thus the transmission
losses of the N = 70 SCISSOR become around 22 dB and
43 dB for α = 1 and 3 cm−1, respectively. This is what would
limit the delay performance and reduce the data fidelity of such
a system. Inevitably, we must conclude that an amplification

Figure 9. Optimal results of: (a) EO-constrained fractional EOD and
IT-constrained fractional ID, (b) power throughput, (c) self-coupling
coefficient k on the left axis and LR = 150 µm on the right axis, and
(d) distortion on the left axis and IT on the right axis as a function
of N .

process is required for the SCISSOR. As mentioned earlier,
an SBS gain medium is a good choice for increasing both the
delay performance and the signal amplification by combining
it with the SCISSOR.

4.2. Broadband SBS

Slow light via the stimulated Brillouin scattering process has
previously been demonstrated for tunable delay in optical
fibers [10, 24, 29]. The SBS process is a nonlinear interaction
between a strong pump wave and a weak probe wave that is
mediated by an acoustic wave. The acoustic wave generated
from this interaction scatters photons to the probe wave,
shifting the scattered light downward to the Stokes frequency
ωs = ωp − )B, where )B is the Brillouin frequency
shift in an optical fiber. As a result, the Stokes field
experiences strong gain at ωs. For a typical single mode
fiber, the Brillouin frequency shift )B/2π is ∼10 GHz and the
Brillouin linewidth */2π is ∼40 MHz near the communication
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Figure 10. Transmission spectra (log-scale) for SBS, SCISSOR, and
SCISSOR + SBS along with the input pulse spectrum at a
BR = 10 Gbps. SBS parameters of gain = 10, gain bandwidth =
10 GHz, and super-Gaussian factor = 2 and SCISSOR parameters of
N = 1, k = 0.965, α = 1 cm−1, and LR = 150 µm are used.

wavelength of 1550 nm. However, this narrow bandwidth
limits the achievable data rate to only several megabits per
second. Much of the recent research into SBS slow-light
has focussed on broadening the available SBS bandwidth,
and several techniques have been experimentally demonstrated
that accommodate a GHz data rate. A primary technique is
direct modulation of a Gaussian noise source, generated by
an arbitrary waveform generator. Gain bandwidths of up to
25 GHz have been experimentally demonstrated [11–14].

Under the small signal approximation, the input field
E(0,ω) will be amplified at the fiber output according to
E(L f,ω) = E(0,ω)HSBS(ω), with the SBS transfer function
HSBS(ω) = exp(k(ω)L f). Here, L f represents the fiber length
and k(ω) is the complex wavevector. For the pump broadened
SBS, k(ω) = Pp(ω) ⊗ gB(ω) can be obtained by convolving
the pump spectrum Pp(ω) with the Lorentzian gain profile
gB(ω) = g0 Ip/[1 − j((ω − ωs)/(*/2))], where g0 is the line-
center gain coefficient. Pant et al showed that a super-Gaussian
function provides a good approximation of the optimal pump
profile Pp(ω) = (x1/x2) exp[−(ω−((ωs+)B))/x2)

2x3 ], where
the parameters x1, x2, and x3 define pump peak power, pump
width, and pump shape (i.e. x3 = 1 is Gaussian and x3 & 1
becomes nearly rectangular) [19]. In section 4.3, these three
parameters will be optimized subject to the fidelity constraint
and the maximum SBS gain constraint, G = max{k(ω)L f} "
10. When ω = ω0, the line-center gain of the broadband SBS
is defined by G # g0x1*π L f/2Ax2, where A is the mode
area. This gain constraint is imposed to avoid the nonlinear
amplifier behavior and the maximum available gain G = 10 is
a conservative value compared to the Brillouin gain threshold
of ∼25 [29].

4.3. SBS + SCISSOR

Recall the results presented in figure 9, from which we
proposed the utility of a joint SCISSOR + SBS system. To
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Figure 11. Input and output eye-diagrams versus SBS gain. (a) Input
and output eye-diagrams for (b) SCISSOR-only (SBS G = 0),
(c) SCISSOR + SBS (G = 1), (d) SCISSOR + SBS (G = 5), and
(e) SCISSOR + SBS (G = 10). Double-sided arrows represent TEO.
Note that N = 1.

demonstrate more explicitly the advantages of this combined
slow-light device, in this section we present a practical system
design, analyzing its performance in terms of several important
factors such as FD, PT, D, and IT. The transfer function for
such a device is given by H (ω) = HSCISSOR(ω) × HSBS(ω),
and its real and imaginary parts at resonance are related to
the gain and the refractive index profiles through the Kramers–
Kronig relation. Figure 10 shows the normalized transmission
spectra for individual and combined systems along with the
spectrum of a 128 bit pseudo-random RZ sequence at BR =
10 Gbps. We assumed the signal carrier frequency and the
SCISSOR resonance frequency ω0 are the same as the SBS
Stokes frequency ωs. To better understand the impact of using
this combined system, we look at the input and output eye-
diagrams after propagating through the combined transmission
spectrum, as shown in figure 10, for several different SBS
gain values of G = 0, 1, 5, and 10. These results are
shown in figure 11. For simplicity, we first consider the
SCISSOR with N = 1 and note that the combined system
with SBS G = 0 is a resonator-only system. It is known
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Figure 12. Optimal results of (a) EO-constrained fractional EOD and IT-constrained fractional ID, (b) power throughput (dB), (c) SBS gain,
and (d) ring parameters k on the left axis and LR on the right axis as a function of N = 1–70. Unit transmission is defined as PT = 1
(i.e. PT = 0 dB).

that the Gaussian pulse propagating through the ring resonator
undergoes dispersion effects that can cause oscillations at the
pulse rising and/or trailing edges mainly due to the cubic-
GVD, as shown in figure 11(b) [30]. On the other hand, in the
SBS system, the output pulse undergoes distortion in the form
of pulse broadening mainly due to the quadratic-GVD. Note
that distortion management techniques for the SBS system
basically suppress the quadratic-GVD term as demonstrated by
Stenner et al [10]. By comparing figures 11(b) and (d), the
fractional EOD for the SCISSOR-only and SCISSOR + SBS
(G = 10) are 0.61 and 1.88, respectively; therefore, it is
clearly observed that the SCISSOR + SBS combination not
only improves delay performance, but also suppresses the
pulse oscillation in the pulse trailing edge arising from the
resonator. Although the SBS process also introduces pulse
broadening, it is not significant in this example. In addition,
combining SBS + SCISSOR provides additional benefits in
terms of delay and PT improvement. Therefore, the combined
system provides a ∼3.1 times larger delay with only a small
sacrifice of ∼1.2 times eye-closing when compared to the
SCISSOR-only system.

Figure 12 shows a summary of the optimal results for the
resonator loss a = 1 cm−1 as a function of N = 1–70 for
two candidate systems: SCISSOR-only and SCISSOR + SBS
systems under data fidelity constraints (IT ! 0.87 and D "
0.35). We observe that results via both metrics agree well.
In general, the maximum fidelity-constrained delays gradually
increase, while the optimal SBS gain G and SCISSOR
coupling coefficient k decrease. The gain and k must be chosen
effectively to achieve the maximum delay performance under
the IT and D limit. Therefore, for the region of N < 7,
the maximum gain can remain constant, whereas k decreases.
However, any further increase in N requires a decrease in SBS

gain as shown in figure 12(c). We know that the presence of
loss causes a nonnegligible decrease in PT for increasing N
as shown in figure 12(b). The results, however, indicate that
the combined system can significantly improve the PT and the
delay performance. Even for a large number of rings (N =
70) the combined system can achieve unit power transmission
ratio. The optimal design curves presented in figures 12(a)–
(d) represent bounds on the performance of our proposed delay
devices subject to real-world operating and fidelity constraints.
It is important to note that the approximately 9 bits distortion-
constrained delay improvement for the combined system with
N = 70 is not directly from the delay capability of the SBS,
but rather because the combined system can use a much higher
value of coupling coefficient k, as shown in figure 12(d).

In summary, the proposed technique enables a maximum
fractional delay of ∼17, which is ∼2.1 times the maximum
SCISSOR-only delay, with unit power transmission using
a cascade of 70 ring resonators combined with an SBS
gain medium and can overcome Khurgin’s fundamental limit
for the fractional delay for a SCISSOR, in which N >

100 resonators are required for fractional delay of 10 [31].
One might ask to cascade the SCISSOR and semiconductor
optical amplifier (SOA) instead of the SBS in order to
improve the attenuation issue arising in the SCISSOR system.
In addition to the attenuation issue, however, our design
goal is to maximize the delay while minimizing the signal
distortion. The advantage of broadband SBS is that we
can shape the SBS gain spectrum (and therefore the overall
transmission spectrum for the combined SBS + SCISSOR
system) providing a mechanism to optimize delay subject to
distortion constraints. In contrast, SOA has a Lorentzian gain
profile, making it difficult to create the ideal gain profile for
SOA + SCISSOR. Therefore, we expect SBS + SCISSOR to

9
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have superior distortion-constrained delay performance when
compared with SOA + SCISSOR.

5. Conclusion

We have presented a practical system design for increasing
the fractional delay while maintaining high data fidelity
by combining SBS and SCISSOR. We have employed two
different fidelity metrics (the EO-metric and the IT-metric)
to evaluate the slow-light system performance subject to
real-world resource constraints. By jointly optimizing the
system parameters, the combined SBS + SCISSOR system
can provide larger delay and improved power throughput
compared to the SCISSOR-only system. We have shown
that the maximum fidelity-constrained delay of ∼17 for
SBS + SCISSOR can be achieved with a unit power
transmission at a bit rate of 10 Gbps.
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