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Abstract: This paper describes a single-shot spectral imaging approach
based on the concept of compressive sensing. The primary features of
the system design are two dispersive elements, arranged in opposition
and surrounding a binary-valued aperture code. In contrast to thin-film
approaches to spectral filtering, this structure results in easily-controllable,
spatially-varying, spectral filter functions with narrow features. Measure-
ment of the input scene through these filters is equivalent to projective
measurement in the spectral domain, and hence can be treated with the
compressive sensing frameworks recently developed by a number of groups.
We present a reconstruction framework and demonstrate its application to
experimental data.
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1. Introduction

Spectral imaging is an emerging tool for a variety of scientific and engineering applications
because of the additional information it provides about the nature of the materials being im-
aged. Traditional imagers produce two-dimensional spatial arrays of scalar values representing
the intensity of a scene. A spectral imager, in contrast, produces a two-dimensional spatial ar-
ray of vectors which contain the spectral information for the respective spatial locations. The
resulting data is known as the spectral data cube because of its three-dimensional nature. The
addition of spectral information can provide valuable information in a variety of contexts rang-
ing from environmental monitoring [1, 2], to astrophysics [3], to biochemistry [4, 5] to security
applications [6].

Adoption of spectral imaging has been slow because of a fundamental tradeoff between spa-
tial resolution, spectral resolution, light collection, and measurement acquisition time. Standard
spectral imaging designs can simultaneously optimize only two of the four quantities—resulting
in relatively poor overall performance. The origin of these tradeoffs can be readily understood.
Traditional, non-multiplexed, spectrometers already exhibit a tradeoff between light collection
and spectral resolution. Any system that attempts to use one of these systems as the spectro-
graph in a spectral imager inherits this limitation. Further, the fact that the spectral image data
cube is three-dimensional, while available detector arrays are two-dimensional results in either
a need for scanning (which increases the overall acquisition time) or in the tiling of the de-
tector array with multiple two-dimensional slices of the cube (which, if the field of view is held
fixed, limits the spatial resolution). In the past decade, however, there have been a number of
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ingenious designs that allow independent control of three of these quantities simultaneously
[7, 8, 9], largely through the introduction of various multiplex measurement techniques.

This paper attempts to eliminate the remaining tradeoffs by presenting a novel spectral imag-
ing system and associated reconstruction framework that fully decouples the four operational
quantities. The imager is a completely static, single-shot design, resulting in a mechanically
robust and inexpensive system. In these respects the system architecture is a descendent of
the coded-aperture spectroscopy architecture previously developed by several of the current
authors [10, 11, 12, 13, 14]. In our first extension to spectral imaging [9], however, that imple-
mentation required a sequence of exposures in order to measure the contents of the spectral data
cube. The system architecture described in this manuscript (of which early versions were dis-
cussed in [15, 16]) has been developed precisely to avoid that shortcoming. In this system, the
imager does not directly measure each voxel in the data cube. Instead, it collects a small number
(relative to the size of the data cube) of coded measurements, and then a novel reconstruction
method is used to estimate the spectral image from the noisy projections.

This approach draws heavily on ideas in the emerging field of compressed sensing [17, 18,
19]. In compressed sensing, certain design strategies are incorporated into measurement sys-
tems in a way that can dramatically improve the system’s ability to produce high-quality recon-
structions from a limited number of measurements. The basic idea of this theory is that when
the signal of interest is very sparse (ie. zero-valued at most locations) or highly compressible
in some basis, relatively few incoherent observations are necessary to reconstruct the most sig-
nificant non-zero signal components. In the remainder of this manuscript we demonstrate the
practical application of these ideas to spectral imaging. We describe a particular system design,
present a multiscale reconstruction algorithm, and demonstrate that accurate spectroscopic im-
ages can be estimated from an under-determined set of noisy projections.

2. System design

The system is comprised of two sequential dispersive arms of the 4-f type commonly used
(singly) as a traditional dispersive spectrometer. The two arms are arranged in opposition so that
the second arm exactly cancels the dispersion introduced by the first arm. A coding aperture
occupies the plane separating the two arms. A schematic of the system is shown in Fig. 1.

Input
aperture

Dispersive
element 1

Coding
aperture

Dispersive
element 2

Detector
array

f f

f f

f f
f f

Arm 1 Arm 2

Fig. 1. Schematic of the spectral imager.

The operational characteristics of the system can be easily understood on a conceptual level.
A standard imaging relay (not shown) is used to form an image of a remote scene in the plane
of the input aperture. The input aperture is then imaged through the first arm onto the plane
containing the coding aperture. However, because the arm contains a dispersive element, mul-
tiple images are formed at wavelength-dependent locations. At this point, the spatial structure
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in the plane of the coding aperture contains a mixture of spatial and spectral information about
the source. Passing through the coding aperture modulates this information with the applied
pattern. The second arm then undoes the spatial-spectral mixing introduced by the first arm as
it forms an image of the source on the detector. In the process of undoing the effects of arm
1, the spatial modulation introduced by the coding aperture is transformed into a spatial and
spectral modulation. The details of the process are described in the following section.

2.1. System model

We denote the spectral density entering the instrument as S0(x,y;λ ). The spectral density just
prior to the code aperture is then

S1(x,y;λ ) =
∫∫

dx′ dy′ δ (x′ − [x+ α(λ −λc)])δ (y′ − y)S0(x′,y′;λ )

= S0(x+ α(λ −λc),y;λ ). (1)

Here the Dirac delta functions describe propagation through unity-magnification imaging optics
and a dispersive element with linear dispersion α and center wavelength λ c. (Note that this
model assumes linear dispersion—which is approximately true only over limited wavelength
ranges. The system can still be operated in nonlinear regions, as the processing algorithm is
calibration based. The linear model is only used to provide guidance about the aperture code.)

Immediately after the coding aperture the spectral density is given by

S2(x,y;λ ) = T (x,y)S1(x,y;λ ) = T (x,y)S0(x+ α(λ −λc),y;λ ), (2)

with T (x,y) the spatial transmission pattern imposed by the coding aperture.
Propagation through the second set of imaging optics and the second dispersive element

results in a spectral density in the detector plane of

S3(x,y;λ ) =
∫∫

dx′ dy′ δ (x′ − [x−α(λ −λc)])δ (y′ − y)S2(x′,y′;λ )

= T (x−α(λ −λc),y)S0(x,y;λ )
= H(x,y;λ )S0(x,y;λ ). (3)

Again, the Dirac delta functions describe propagation through the imaging optics and disperser
(note the internal sign change representing the reversed orientation of the disperser). Here we
have defined the spectral density filter function H(x,y;λ ) = T (x −α(λ − λ c),y). This for-
mulation makes explicit the fact that the two-dimensional coding pattern introduces a three-
dimensional filter function that acts on the source spectral density.

As the detector is wavelength-insensitive, the ultimate quantity measured is not the spectral
density in the detector plane, but the intensity

I(x,y) =
∫

dλ H(x,y;λ )S0(x,y;λ ). (4)

Further, the detector array is spatially pixelated. If we take the pixel size as Δ, then the detector
measurements become

Inm =
∫∫∫

dxdydλ rect
( x

Δ
−m,

y
Δ
−n

)
H(x,y;λ )S0(x,y;λ ). (5)

It then becomes natural to consider a coding aperture where the transmission function T is
pixelated with features that are the same size as the detector pixels (Note that for implemen-
tation reasons, it is actually preferable to consider codes where the features sizes are integer
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multiples of the detector pixel size. Extending this formal treatment to that case is straightfor-
ward.)

T (x,y) = ∑
m′,n′

Tn′m′ rect
( x

Δ
−m′,

y
Δ
−n′

)
. (6)

With this, Eq. 5 becomes

Inm = ∑
m′n′

∫∫∫
dxdydλ rect

( x
Δ
−m,

y
Δ
−n

)
rect

(
x−α(λ −λc)

Δ
−m′,

y
Δ
−n′

)

× Tn′m′ S0(x,y;λ ). (7)

To gain an understanding of how the coding pattern influences the measured intensity dis-
tribution, it is instructive to consider two highly constrained cases. First we consider a mono-
chromatic source with S0(x,y,λ ) = I0(x,y)δ (λ −λc), where I0(x,y) is the intensity distribution
of the monochromatic scene. In this case, Eq. 7 simplifies significantly

Inm|λ=λc = ∑
m′n′

∫∫∫
dxdydλ rect

( x
Δ
−m,

y
Δ
−n

)
rect

( x
Δ
−m′,

y
Δ
−n′

)

× Tn′m′ I0(x,y)δ (λ −λc)

= ∑
m′n′

δmm′ δnn′ Tn′m′ I0,nm

= Tnm Inm, (8)

where I0,nm is a spatially-pixelated version of the monochromatic source intensity I 0(x,y). Next,
we consider the response to a monochromatic source at λ = λ c + Δλ with Δλ = Δ/α , with α
the linear dispersion of the dispersive elements. In this case, we find

Inm|λ=λc+Δλ = ∑
m′n′

∫∫∫
dxdydλ rect

( x
Δ
−m,

y
Δ
−n

)
rect

( x
Δ
− (m′ +1),

y
Δ
−n′

)

× Tn′m′ I0(x,y)δ (λ − (λc + Δλ ))

= ∑
m′n′

δmm′ δnn′ Tn′(m′+1) I0,nm

= Tn(m−1) I0,nm. (9)

Thus we see that the contribution from a particular wavelength is the pixelated source weighted
by a version of the aperture code that shifts in the x direction as the wavelength changes. At
the center wavelength, the weighting pattern is aligned with the detector pixels. For wavelength
shifts that are integer multiples of Δλ , the pattern is again registered with the detector pixels.
However, for intermediate wavelengths, the elements in the coding pattern straddle multiple
detector pixels.

Finally, we define the filter function

wnmp = ∑
m′n′

∫∫∫
dxdydλ rect

(
x
Δ
−m,

y
Δ
−n,

λ −λc

Δλ
− p

)

× rect

(
x−α(λ −λc)

Δ
−m′,

y
Δ
−n′

)
Tn′m′ , (10)

and the fully pixelated source spectral density as

snmp =
1

Δ2Δλ

∫∫∫
dxdydλ rect

(
x
Δ
−m,

y
Δ
−n,

λ −λc

Δλ
− p

)
S0(x,y;λ ). (11)
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If the source spectrum is slowly varying on the scale Δλ , then we can approximate Eq. 5 as

Inm = ∑
p

wnmp snmp. (12)

2.2. Code design

The analysis in the previous section determined the nature of the spatio-spectral filter that is ap-
plied and how it is related to the code pattern placed in the system. It is most convenient to view
the filter function wnmp as a spatially varying collection of spectral filters. In this framework,
the analysis above reveals the following facts:

1. The spectral filter for a given spatial location may contain structure on a scale as narrow
as Δλ = Δ/α . Typically, this is significantly narrower than the features in a traditional
thin-film interference filter.

2. The spectral filters in different rows of the detector (different n) are unconstrained. There
are no correlations imposed by the physical structure.

3. The spectral filters within a row (same n) are cyclic permutations of each other. This
arises from the spatial shift in the m-direction that arises from spectral shifts. (e.g., In a
hypothetical instrument with 4 spectral channels, the spectral filter applied to a particular
pixel had values {a,b,c,d}, then the filters on its left/right neighbors are {b,c,d,a} and
{d,a,b,c}, respectively).

4. The measurement at a given detector pixel is the inner product of the spectral filter for
that pixel and the pixelated source spectrum for that spatial location (see Eq. 12).

To create a system with M spectral channels requires a 1-D code of at least length M. For
the remainder of this paper, we assume a code of length M for simplicity. The physical nature
of the system produces spectral filters that are all M possible cyclic shifts of the fundamental
code. Thus we are led to consider well-conditioned codes that consist of cyclic permutations of
a single master codeword. The canonical example of these types of codes are those based on the
cyclic S-matrices [20]. For our initial system (and earliest simulations), we drew upon the order-
15 cyclic S-matrix with the fundamental codeword “100100011110101”. This code provides
several advantages, including M unique cyclic shifts and an overall transmission efficiency of
8/15.

If the coding plane were directly tiled with this pattern, the various filter functions would be
implemented on the detector plane in the manner depicted in Fig. 2. In this image, the number
k denotes the kth spectral filter function, which corresponds to the fundamental codeword cir-
cularly shifted by k− 1 bits; thus 1 refers to the fundamental codeword “100100011110101”,
2 refers to the shifted codeword “001000111101011”, etc. The difficulty with this arrangement
is that there are no compact regions that contain all of the filter functions.

Fig. 2. Distribution of filter functions that arises from simple tiling of the fundamental
codeword. No compact region contains all 15 filters.
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If we instead tile the aperture plane with a unit cell of the form

100100011110101

001111010110010

101011001000111

(three copies of the fundamental codeword, but with circular shifts of five elements between
rows) then the filter functions are arrayed on the detector plane as displayed in Fig. 3. In this
scheme, any 3×5 region on the detector contains all 15 spectral filters.

1 2 3 4 5 615

1 2 3 4 5 615

11 12 13 14 15 110

11 12 13 14 15 110

6 7 8 9 10 115

Fig. 3. Distribution of filter functions that arises from the more complicated unit cell. Any
3×5 region contains all 15 filters.

3. Reconstruction methods

In this section we describe the multiscale reconstruction process employed to get the spatial
and spectral information from the mask-modulated intensity information represented in Eq. 12.
First we formulate a parametric model for the noisy observations we measure at the detector
array, and then describe the estimation process. We compute an optimal solution to this un-
derdetermined problem using an expectation maximization algorithm combined with a wavelet
denoising technique. The following subsections give a systematic description of our approach.

3.1. Multiscale reconstruction method

Let the spectral image of interest be denoted sss = {snmp}, and the intensity of the observations
as III = {Inm}, so that equation (12) can be written in matrix-vector notation as

III = WWWsss,

where the matrix WWW performs the discretized filtering described in Sec. 2.1. In addition, we
model our observed data as

ddd ∼ Poisson(III) = Poisson(WWWsss),

so that the likelihood of observing ddd given spectral image sss is

p(ddd|WWWsss) =
N

∏
n=1

M

∏
m=1

e−∑p wnmpsnmp
(
∑p wnmpsnmp

)dnm

dnm!
.

Note that WWW has many more columns than rows (by a factor of M), making this a very under-
determined problem.

To solve this challenging inverse problem, we seek a solution ( ŝss) which is both a good match
to the data (ddd) and sparse. In particular, we solve the following optimization problem:

ŝss = argmin
s̃ss∈S

{− log p(ddd|WWWs̃ss)+pen(s̃ss)} , (13)
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where S is a collection of estimators to be described below, and pen( s̃ss) is a penalty is propor-
tional to the sparsity of s̃ss in a multiscale spatio-spectral representation. This will be described
in detail below.

The use of sparsity to solve challenging and ill-posed inverse problems has received wide-
spread attention recently [17, 18, 19, 21, 22]. The objective function proposed in (13) in partic-
ular is similar to those proposed in [21, 22], in that we seek a solution accurately represented
by a small number of cells in an RDP (i.e. sparse). We compute the solution to this problem
using an Expectation-Maximization algorithm, which in this case is a regularized version of the
Richardson-Lucy algorithm [23, 24, 25]. The method consists of two alternating steps:

Step 1:
yyy(t) = ŝss(t).×WWWT (ddd./WWWŝss(t)),

where .× and ./ denote element-wise multiplication and division, respectively.

Step 2: Compute ŝss(t+1) by denoising yyy(t):

ŝss(t+1) = argmin
s̃ss

{
− log p(yyy(t) |̃sss)+pen(s̃ss)

}
.

The penalized likelihood denoising method employed in Step 2 takes advantage of correlations
in the data between both wavelengths and spatial locations. The proposed method entails per-
forming hereditary Haar intensity estimation via tree pruning in the spatial dimensions, with
each leaf of the resulting unbalanced quad-tree decomposition corresponding to a region of
spatially homogeneous spectra.

In particular, we determine the ideal partition of the spatial domain of observations and use
maximum likelihood estimation to fit a single spectrum to each square in the optimal spatial
partition. The space of possible partitions is a nested hierarchy defined through a recursive
dyadic partition (RDP) of the datacube domain. The optimal partition is selected by merging
neighboring squares of (i.e. pruning) a quad-tree representation of the observed data to form a
data-adaptive RDP P . Each of the terminal squares in the pruned spatial RDP could correspond
to a region of intensity which is spatially homogeneous or smoothly varying (regardless of the
regularity or irregularity between the spectral bands). This gives our estimators the capability of
spatially varying the resolution to automatically increase the smoothing in very regular regions
of the intensity and to preserve detailed structure in less regular regions.

Given a partition P , s̃ss(P) can be calculated by finding the “best” spectrum fit to the obser-
vations over each cell in P . This can be accomplished by simply computing the mean observed
spectrum in each cell of P . The final spatio-spectral estimate is then calculated by finding the
partition which minimizes the total penalized likelihood function:

P̂ ≡ argmin
P

{
− log p(yyy(t) |̃sss(P))+pen(P)

}

ŝss ≡ s̃ss(P̂), (14)

where pen(P) is a penalty proportional to the number of cells in the RDP, encouraging a sparse
solution (in terms of the size of the RDP). This method is described in detail in [26].

This approach is similar to the image estimation method described in [27, 28], with the key
distinction that the proposed method forces the spatial RDP to be the same at every spectral
band. A sample such partition is displayed in Fig. 4. This constraint makes it impossible for
the method to perform spatial smoothing at some spectral bands but not others. In other words,
when a tree branch is pruned in the proposed framework, it means partition cells are merged
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in every spectral band simultaneously at the corresponding spatial location. This approach is
effective because an outlier observation in one spatio-spectral voxel may not be recognized as
such when spectral bands are considered independently, but may be correctly pruned when the
corresponding spectrum is very similar to spatially nearby spectra.

Sp
at

ia
l D

im
en

si
o

n
 2

Spatial Dimension 1

Spectra
l D

im
ensio

n

Fig. 4. Sample partition of a spatio-spectral data cube. The spatial partition is the same
at each spectral band, making it impossible for the estimation method to perform spatial
smoothing at some spectral bands but not others.

The accuracy of these estimates can be augmented by a process called cycle-spinning, or av-
eraging over shifts, resulting in translation-invariant (TI) estimates [29]. Cycle-spinning was
derived in the context of undecimated wavelet coefficient thresholding in the presence of
Gaussian noise, but is difficult to implement efficiently in the case of tree-pruning methods.
The above multiscale tree-pruning methods can be modified to produce the same effect by
averaging over shifts, but the increase in quality comes at a high computational cost. Novel
computational methods [28], however, can be used to yield TI-Haar tree pruning estimates in
O

(
N2M logN logM

)
time for an N ×N×M data cube.

4. Experimental results

To test the dual-disperser architecture, we constructed a proof-of-concept spectral imaging sys-
tem as described in Sec. 2. A photograph of the experimental prototype is shown in Fig. 5. As
designed and built, the prototype has an operational range of 520–590 nm. It is an interesting
consequence of the system approach that shifting the wavelength by one spectral band should
produce the same physical shift on the coding array as a spatial shift by one spatial resolu-
tion element. As a result, the system requires a low amount of dispersion. For this prototype
we achieved this with a prism-based approach (diffractive approaches are possible, but more
challenging as low dispersion tends introduce overlap from higher diffraction orders).

Before the system may be used to for spectral imaging, it requires calibration. This calibra-
tion is performed by sequentially measuring the response of the system to spatially-uniform
monochromatic light at 2 nm steps in the range 520–590 nm. To minimize the noise in the cal-
ibration, the system response at a given wavelength is taken to be the average of 10 exposures.
Further, the monochromator used to generate the light has a non-uniform output as a function
of wavelength. To control for this, a small portion of the light output is fed into a photodiode
with a known wavelength response. At each wavelength step, the output of this photodiode is
used to adjust the exposure time to keep the total energy propagating through the spectral im-
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Fig. 5. The experimental prototype.

ager constant. This process is automated via MATLAB. When the resulting system responses
are stacked according to wavelength, the result is the system filter function w nmp as defined in
Eq. 10

As a first test of the system we consider simple targets illuminated with monochromatic
light. We begin with a pingpong ball and illuminations at 532 nm and 543 nm. A representative
detector image (taken with 532 nm illumination) is shown in Fig. 6(a). Note the modulation
introduced by the coding aperture. The pattern is particularly clear because of the monochro-
matic source. An estimated intensity image of the scene, generated by summing the spectral
channels in the reconstructed datacube is shown in Fig. 6(b). The reconstruction algorithm has
largely succeeded in eliminating the modulation introduced by the screen. Figures 6(b) and (c)
are the spectral estimates for a particular spatial location in the cases with 532 nm and 543 nm
illumination, respectively. The reconstruction accurately locates the spectral peaks.

We next consider the same simple target but now with slightly broader illumination—
broadband light filtered by 10 nm FWHM bandpass filters centered at 560 nm and 580 nm,
respectively. A representative detector image take with the 560 nm filter is shown in Fig. 7(a).
Note that the sharpness of the modulation pattern introduced by the coding aperture has de-
creased as a result of the increased spectral width. An estimated intensity image of the scene is
shown in Fig. 7(b). Figures 7(c) and (d) show the spectral reconstruction at a particular spatial
location for the 560 nm and 580 nm bandpass filters, respectively. Again, the reconstruction ac-
curately locates the spectral peaks. However, we note that, for the 580 nm bandpass, a spurious
peak now appears near 520 nm. For this bandpass, there is significant source illumination at
wavelengths longer than 590 nm. The system is designed for a spectral range of 520–590 nm.
Any wavelengths outside this band are aliased back into this range (the illumination produces
a coding pattern that is indistinguishable from that generated by a wavelength inside the oper-
ational band). The peak at 520 nm, then, is an aliased version of source energy above 590 nm.
Any final system would avoid this difficulty by incorporating a bandpass filter matched to the
spectral range of the instrument.

Finally, we image a slightly less constrained target under more normal illumination. For this
portion of the experiment, we use a collection of citrus fruit under broadband (white) light illu-
mination. The resulting reflection spectrum contains significant energy in the spectral band of
interest. Figure 8(a) shows the detector image captured during this experiment. The top fruit is
green, the bottom right is yellow-green, and the bottom left is yellow-orange. Note the the broad
spectral ranges have made the spectral patterns very indistinct, and that the patterns are subtly
different in the three regions as a result of the different spectral components. A reconstructed
intensity image is shown in Fig. 8(b). The spectral reconstructions for the three different regions

#85145 - $15.00 USD Received 10 Jul 2007; revised 1 Oct 2007; accepted 3 Oct 2007; published 11 Oct 2007

(C) 2007 OSA 17 October 2007 / Vol. 15,  No. 21 / OPTICS EXPRESS  14022



500 520 540 560 580 600
0

2

4

6

8 x 10−3

wavelength (nm)

Sp
ec
tr
a
l
in
te
ns
it
y
(a
.
u
.)

500 520 540 560 580 600
0

0.5

1

1.5 x 10−3

Wavelength  (nm)

Sp
ec

tr
al

 in
te

n
si

ty
 (a

. u
.)

(a) (b)

(d)(c)

Fig. 6. Experimental results from simple targets with monochromatic illumination. (a) De-
tector image recorded for 532 nm illumination. (b) Intensity image generated by summing
the spectral information in the reconstruction for 532 nm illumination. (c) Spectral recon-
struction at a particular spatial location for 532 nm illumination. (d) Spectral reconstruction
at a particular spatial location for 543 nm illumination.

are shown in Fig. 8(c) along with measurements made by a conventional spectrometer. There
is good qualitative agreement between the reconstructions and the conventional measurements,
especially in the central spectral regions. We believe that the measurements from the conven-
tional instrument are not fully accurate because of the practical difficulties in coupling the
reflected spectra to the probe. However, at least a portion of the deviation arises from inaccu-
rate reconstructions, as we again see some spurious peaks near 520 nm that are the result of
spectral aliasing.

Figure 9 shows slices of the reconstructed datacube for 8 specific channels across the spectral
range. An animation showing all of the channels in the reconstruction is in Fig. 10.

5. Conclusions

In this manuscript we have described a new, single-shot spectral imager based on compres-
sive sensing ideas. The ability to create nearly arbitrary spectral projections on the source dat-
acube arises from the novel dual-disperser design. In addition, we have developed a unique
multiscale reconstruction method for use with compressive spectral imagers of this type. This
reconstruction technique combines a maximum likelihood estimator with a penalty-based mul-
tiscale denoising technique that utilizes spatio-spectral correlations in the scene to improve the
reconstruction quality.

A proof-of-concept prototype has been constructed and tested on both highly-constrained and
real-world sources. The reconstructions accurately capture the spectral features of the source
(barring a spectral aliasing that can be eliminated through the incorporation of a bandpass filter
on future systems). The spatial structure of the reconstructions is also accurate. The modulation
introduced by the coding aperture is successfully removed by the reconstruction (especially for
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Fig. 7. Experimental results from simple targets with narrow-band illumination. (a) De-
tector image recorded for illumination with a 10 nm FWHM bandpass centered at 560 nm.
(b) Intensity image generated by summing the spectral information in the reconstruction
for the 560 nm bandpass. (c) Spectral reconstruction at a particular spatial location for the
560 nm bandpass. (d) Spectral reconstruction at a particular spatial location for the 580 nm
bandpass. The origin of the small peak near 520 nm is explained in the text.

the broadband, real-world scene).
The result is a single-shot spectral imager that, for the first time, mitigates the trade-offs

between spatial resolution, spectral resolution, light collection, and measurement acquisition
time. While the performance of the system is quite acceptable for a first proof-of-concept,
we feel that the results are limited by the stock optics used to create the present prototype.
We are currently constructing a new version, with dramatically enhanced spatial and spectral
resolution.
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Fig. 8. Experimental results from real-world objects under broadband (white) illumination.
(a) Detector image recorded by the system. (b) Reconstructed intensity image of the scene.
(c) Spectral reconstructions for spatial locations in the three regions.
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Fig. 9. Slices through the reconstructed datacube at 8 particular spectral channels.
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Fig. 10. Animation showing all 36 reconstructed spectral channels. (Multimedia file, 1.1
MB.)
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