Object-Oriented Programming with Python
David MacQuigg, PhD
This is a re-write of the Object-Oriented Programming (OOP) chapters, pp. 295-390, in Learning Python, 2nd ed., by Mark Lutz and David Ascher. I expect it will grow to about 35 pages with the inclusion of more examples and exercises.

I am an electronic design engineer. My intended audience is technical professionals and students who would benefit from Python, but who have little background in computer and information science (CIS) and little time to learn the intricacies of a programming language. Python is the best language for such professionals, since it was designed to make writing full-featured programs as simple as possible.
Learning Python is one of the best texts for beginners in this language. For a busy technical professional, however, it is rather long and detailed. It is often hard to see the practical essence of a language in a long presentation. On the other hand, shorter and more advanced presentations tend to be oriented toward CIS professionals who have plenty of experience with other languages. Non-CIS students find these advanced texts hard to follow. They are not proficient in the terminology and abstractions inherited from other languages.
So the goal of these pages (except for the section "Advanced Topics") is to present a short, simple introduction to OOP for engineers and scientists who are technically smart, but not proficient in computer languages. This group is familiar with modular design, and already knows why object-oriented programming is useful, so I won't waste even a page on motivation. My goal is to gain the maximum practical programming power with the least amount of effort, and the least amount of arbitrary nonsense that has to be remembered.
I will assume readers of these pages are familiar with Python data structures, functions, and modules, as described in Learning Python up to page 295, but are new to object-oriented programming. They have used objects, so they know how to get and set attributes (sys.path.append(pathX)), but they know nothing of how classes are defined.

Other good references on Python OOP, suitable for non-CIS technical professionals include:

http://docs.python.org/tut/tut.html -- Guido van Rossum's standard Python tutorial. Chapter 9 is a good intro to the syntax of classes, but is short on examples.

http://python.org/doc/Intros.html -- a complete bibliography on introductory material.
Python Quick Reference – summary of the syntax. Find current link on Intros page.

http://www.python.g2swaroop.net – A Byte of Python – tutorial by G.H. Swaroop. Chapter 11 covers OOP with good examples, but not as much depth as I would like.
Visit my website at http://ece.arizona.edu/~edatools/Python and send comments or suggestions to macquigg@ece.arizona.edu
Note: Two excellent texts have become available since this chapter was written: Python Programming, An Introduction to Computer Science, by John Zelle; and Object-Oriented Programming in Python by Goldwasser & Letscher. For learning computer science, I would recommend either of these over Lutz & Ascher. Zelle is easier. Goldwasser is more thorough.

Chapter 19
Object Oriented Programming
We have seen how to "modularize" a large program by packaging its functions and data in modules – each having its own namespace, and each having its own file on disk. Now we are going to look at a new way to package data and functions – a class.
Classes are more versatile than modules, mainly because they can inherit data and functions from other classes, and they can serve as a template or prototype for multiple instances, each with small variations in the data and functions provided by the class, and each having its own namespace. These features make it easy to build large hierarchies of objects with complex behavior. Each object acts as a "component" in the larger system, with all the internal details "encapsulated" so the user of the component has to learn only a simple interface.
Classes and Instances

Here are some examples of class objects and instances:
Animals_1.py
class Animal(object): # Inherit from the primitive object.

 numAnimals = 0

 home = "Earth"

class Cat(Animal): # Inherit from Animal.

 numCats = 0

 genus = "feline"

 def set_vars(self, n, s):

 self.name = n # Set instance variables.

 self.sound = s

 def talk(self):
 print "My name is ...", self.name

 print "I say ...", self.sound

 print "I am a %s from %s" % (self.genus, self.home)
cat1 = Cat() # Create instances of class Cat.
cat2 = Cat()
cat2.home = "Tucson"
As you can see, a class is a collection of data and functions, very similar to a module. Like a module, each class has its own namespace, so you don't have to worry about conflicts with names in other classes. By convention, class names are capitalized, and instance names are lower case.
The first line of the Cat class says -- make me a new class called "Cat". Start with the class named "Animal", and inherit all of its data and functions. Then add or replace the items that follow. After defining our classes, we create two cat instances by "calling" the class Cat. (No, classes are not functions, but the instantiation syntax for classes is the same as the calling syntax for functions.)
Now for some details. Animal inherits from object, which is the primitive ancestor of all classes. It provides default behavior for all classes, and should be at the top of all hierarchies. [1] When we use Animal as an ancestor for Cat, we are providing Cat with the two variables defined in Animal. At each level, a class inherits all the variables provided by its ancestors, so Dogs, Cats and any other creatures descended from Animal will all have a default home = "Earth", and access to the variable numAnimals, which we can guess keeps the total of all animals on the planet. { Exercise 1 }
[Note 1] If you leave out object, you get an "old-style" class (the standard prior to Python 2.2). New programs should use new-style classes, which you get automatically if you subclass a built-in type, or use object anywhere in the inheritance tree.
Inheritance

Inheritance is not the same as copying. A copied variable has its own place in memory, independent of the original. Inheritance is not the same as referencing, either. You might try to emulate the behavior of a class by generating a module with references to the variables in a "parent" module, but the variables "inherited" by that technique won't work like they do in classes. Changing a variable in the parent module will "disconnect" it from the child, and you now have two variables in memory, just like a copy.
Inheritance is a new and unique way to access external variables. Unlike referencing, changes in a class variable will be seen by all descendents of that class, unless that variable is over-ridden in a descendent, as we have done with cat2.home above. Animal, Cat, and cat1 all show home = "Earth", but cat2 shows home = "Tucson".
Inherited variables are not just frozen references to objects in memory. They are "live links" to the current attributes of their ancestors. Every use of an inherited variable will search for a fresh value from its ancestors. You can change an entire hierarchy by changing just an ancestor. { Exercise 2 }
Instance Variables

There is one other difference between our Animal classes and the code you might find in a similar set of Animal modules. Some of the variables inside the functions in a class have a self. prefix, referring to a special self object that is passed in the first argument of the function call. These are instance variables that may have a different value for each instance of the class. When you call a function from an instance, that instance is automatically inserted as the first argument ahead of any other arguments in the function call. So if you call cat1.talk(), that is equivalent to Cat.talk(cat1) If you call cat1.set_vars("Garfield", "Meow"), that is equivalent to Cat.set_vars(cat1, "Garfield", "Meow"). cat1 is passed as self when the function is called.
The variable name self in the function definition is just a convention. As long as you put the same name in the first argument as in the body of the definition, it can be self or s or even _ The single underscore is handy if you want to maximally suppress clutter. self is recommended if you want other Python programmers to read your code.
Local variables are lost when a function returns. Instance variables survive as long as the instance to which they are attached has some reference in your program. Attachment of instance variables occurs inside a function via assignment to attributes of self, like the ones in Cat.set_vars above, or outside a function with a fully-qualified name, like cat2.home = "Tucson".
Methods and Binding

Another convention is referring to functions defined within a class as methods. This is a term inherited from other languages where methods are significantly different than functions. We will use the term "method" when we want to emphasize that a function belongs in a class, but "function" is always acceptable.
This association of an instance with a method is sometimes called binding. The distinction between instances and classes is important here. If you call a method from a class, that method is not bound to any instance, and you have to supply the instance explicitly in the first argument (Cat.talk(cat1)) { Exercise 3 }
Examples Using Objects
Let's play with our cats:

1>> Cat.numCats = 2

>>> cat1.name, cat1.sound = ("Garfield", "Meow")

3>> cat2.set_vars("Fluffy", "Purr")

>>> cat1.home, cat1.genus, cat1.name, cat1.sound

('Earth', 'feline', 'Garfield', 'Meow')

5>> cat2.talk()

My name is ... Fluffy

I say ... Purr

I am a feline from Tucson

>>> Cat.numCats

2
Here we set the class variable numCats manually, because we don't yet have initiators to do it automatically. We'll show that in the next example. Instance variables can be set directly, as in line 2 above, or via a method call, as in line 3.

There are two pieces of "magic" that make line 3 work. First, the interpreter has to find the method set_vars. It's not in cat2. Then, the instance cat2 has to be inserted as the first argument to set_vars. The method is found by a search starting at cat2 (the instance on which the method is called). The search then proceeds to the parent class, then to the grandparent, and so on up to object, the ancestor of all Animal classes. In this case, we find set_vars in Cat.
The automatic insertion of a first argument happens whenever you call a method as an attribute of an instance. It does not happen if we call the same method some other way. Had we said Cat.set_vars("Fluffy", "Purr") the set_vars method would return a TypeError when it saw that the string "Fluffy" was not an instance of Cat. The interpreter knows the difference between an instance cat2 and a class Cat even if we fail to follow the convention of capitalizing classes. { Exercise 4 }
Line 4 is another example of searching a class hierarchy for needed attributes. Only name and sound are attached to cat1, but home and genus also appear to be attributes of cat1 because of inheritance.
Line 5 shows how having a custom method to display parameters of an object can be a lot more convenient and produce a better display. Let's follow this call step-by-step, just to make sure we understand inheritance and instance variables. The initial call cat2.talk() sets self to cat2 and resolves to Cat.talk(self). Cat.talk(self) finds self.name, self.sound, and self.home attached to cat2, and self.genus attached to Cat.
There is one more bit of magic with self.home We now have two places where home is defined. cat2.home = "Tucson" and Animal.home = "Earth" The interpreter follows the same search procedure as used in searching for a method. It uses the variable lowest in the hierarchy. cat2.home over-rides Animal.home Fluffy knows she is from Tucson, not just Earth.
Differences between Classes and Instances

Other than binding behavior, what are the differences between a class and an instance? Both inherit all the data and methods of their ancestors. Both can be modified by direct access to their attributes. There are two important differences. Classes can inherit from multiple parents. (We'll say more about multiple inheritance later.) Instances can be automatically initialized when they are created.
Say you need to create a bunch of cats and dogs, and you don't want to laboriously modify the data and methods like we did above. You can't do this with inheritance, because that will give only identical data and methods to each instance. But you can set up an initiator method that will customize each instance. Initiator methods are just normal methods with a special name. They can do anything you want, including change the attributes of each new instance, keep a total of all instances, modify global variables, whatever.
Initializing Instances

The automatic initializing works by looking for a method named __init__ in the newly created instance, and running that method in the namespace of the new instance. Let's make a new Cat class. Append this to Animals_1.py:
class CatNew(Cat): # Inherit from Cat.
 numCats = 0

 def __init__(self, n, s):

 self.name = n # Set instance variables.

 self.sound = s

 CatNew.numCats += 1

 def talk(self):

 print "My name is %s ... %s" % (self.name, self.sound)

 print "I am one of %s new cats." % self.numCats

The CatNew class "extends" the class Cat, adding or replacing some of its data and methods. Here we add the method __init__ and replace the variable numCats and the method talk. The variable genus and the method set_vars remain unchanged.
Creating a CatNew instance will now automatically run __init__, creating new instance variables name and sound, adding them to the dictionary of the new instance, and assigning the values we provide in arguments to the instantiation call. The function __init__ will also increment the variable CatNew.numCats, so we don't have to remember this each time we create a new cat.
>>> cat3 = CatNew("Tubby", "Burp")

>>> cat3.talk()

My name is Tubby ... Burp
I am one of 1 new cats.

>>> Cat.numCats

2
After creating cat3, the interpreter searches for an __init__ method, finds it in CatNew, and then calls CatNew.__init__(cat3, "Tubby", "Burp")
The original talk method (the one that said "I am a feline from Tucson") is over-ridden by the talk method in the new class above. Notice that the original numCats variable kept its value 2, but self.numCats now refers to CatNew.numCats.
Attachment of Variables to Classes and Instances

Class variables, that is, variables in a class definition outside of a method, are shared by all instances of that class. If you re-assign one of those class variables as an instance variable, however, that variable will then have two distinct values in memory. The reference to the inherited value is shadowed for that one instance, and subsequent changes to the class variable will not be seen by the instance. An instance variable is like a direct reference to an object in a module. That object is not changed when the module is reloaded. Variables attached to an instance are not changed when the class is changed.
>>> cat1.numCats, cat2.numCats
(2, 2)

>>> Cat.numCats = 9 # change will be inherited by instances
>>> cat1.numCats, cat2.numCats

(9, 9)

>>> cat1.numCats = 0 # assignment creates a new instance variable
>>> cat1.numCats, cat2.numCats
(0, 9) # instance variable shadows class variable
>>> Cat.numCats = 1

>>> cat1.numCats, cat2.numCats

(0, 1) # class variable still shadowed by cat1
>>> del cat1.numCats # instance variable deleted
>>> cat1.numCats, cat2.numCats

(1, 1) # class variable is again visible from cat1
Changes from inherited variables may be confusing if you don't have a clear picture of what variables are attached to each object. The dir(cat1) function shows all variables that are available to the cat1 instance, and makes no distinction between inherited variables and attached variables.
>>> dir(cat1)

['__class__', '__delattr__', '__dict__', '__doc__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__str__', '__weakref__', 'genus', 'home', 'name', 'numAnimals', 'numCats', 'set_vars', 'sound', 'talk']

You can see which of these variables is attached to each class or instance by looking at their namespace dictionaries: { Exercise 5 }
>>> cat1.__dict__.keys()

['sound', 'name']

>>> cat2.__dict__.keys()

['sound', 'home', 'name']

>>> Cat.__dict__.keys()

['numCats', '__module__', 'genus', 'set_vars', 'talk', '__doc__']

>>> Animal.__dict__.keys()

['__module__', 'numAnimals', '__dict__', 'home', '__weakref__', '__doc__']
>>> adk = Animal.__dict__.keys(); adk.sort() # sort() returns None
>>> print adk

['__dict__', '__doc__', '__module__', '__weakref__', 'home', 'numAnimals']
Interrogation of Objects

In addition to the dir() function and __dict__ attributes, there are several other ”interrogation techniques" you might find handy when you are trying to figure out what is going on "behind the scenes" with a Python class, instance, or any type of object.
	dir(obj)
	returns a sorted list of all attributes of an object.

	__dict__
	the namespace dictionary of an object.

	type(obj)
	returns the class of an instance or the metaclass (type) of a class.

	id(obj)
	returns a unique ID (the memory address) of an object.

	callable(obj)
	returns True if the object is callable.

	__name__
	the name of a module, class, or function. [1]

	__doc__
	the docstring of a module, class, or function.

	__module__
	the module in which an object resides.

	__file__
	the path to the file from which a module was loaded.

	__class__
	same as type() but in attribute form.

	__bases__
	the immediate superclasses (parents) of a class.

	__subclasses__()
	returns the immediate subclasses (children) of a class.

	__mro__
	all ancestors of a class in Method Resolution Order.

	issubclass(x,cls)
	True if x is a subclass of cls.

	isinstance(x,cls)
	True if x is an instance of cls.

[Note 1] The name is an attribute of the object, not the name of any variable referencing the object. Instances have no name.
{ "Guide to Python Introspection", Patrick K. O'Brien, IBM DeveloperWorks, Dec 2002, http://www-106.ibm.com/developerworks/linux/library/l-pyint.html }

Scope of Class Variables

Class variables are visible only within the class definition, and not within methods defined in the class.
class Cat(Animal):

 genus = "feline"

 def talk(self):

 print genus ## <== class variable not visible here !!!

>>> cat1.talk()

NameError: global name 'genus' is not defined

To access a class variable, you need to use a fully-qualified name like Cat.genus. This is usually not a big burden, because class variables within a method definition are rare compared to other variables. However, if you find yourself typing a really long name many times in the same definition, you can assign a short alias like bg = BoaConstrictor.genus, and use that alias within the definition. The main problem with the scope rule for class variables is that it departs from the simple LEGB rule for other nested scopes, and therefore confuses beginners. [Note 1] [Note 2] { Exercise 6 }
The scope of class variables should not be confused with their inheritance. cat1.genus is defined by inheritance even if Cat is in some far away scope in another module. Scope is defined lexically, at "compile time". For a reference to a variable to be "in scope", it must be within the section of source code that defines the scope. { LP2E Ch. 13, "Scopes and Arguments" }. Inheritance is defined dynamically, at "run time". The value of an inherited variable is defined at the time a reference to it is executed. { Exercise 7 }
[Note1] The "enclosing scopes" part of the LEGB rule does include function scopes that may enclose the class Cat above, but the Cat scope then appears to be a "gap" in the E part of the rule. See also { Gotcha, LP2E p.382 } for more discussion. Generally, you should not enclose class definitions inside a function.
[Note 2] The omission of class variables from the LEGB rule is not a flaw in Python, but a deliberate limitation. This extra complexity in the scope rules avoids a far more serious problem that can catch even experts – the possibility of inadvertently referencing a class variable having the same name as what was intended to be a local variable in a method of the class. These unintended external references can cause problems that are extremely difficult to track down. Python avoids this problem by insisting that you make all references to class variables explicit.
Bound and Unbound Methods
As we saw in Chapter 14, functions are objects that can be assigned to a variable, saved in a list item, passed via a function argument, or anything else you can do with a variable. Methods add one little twist. Methods can be bound or unbound, meaning they can have a binding to a particular instance, or not. Normally, binding happens automatically when you call a method from an instance, and you don't have to worry about the details. There are times, however, when it is handy to bind a method with an instance and save the bundle for later use. Let's save cat1.talk this way, then delete its method Cat.talk. We will then be able to call that old method and have it run as it did in our first example, preserving both the method and the state of the cat1 instance as it was when we saved cat1.talk.
>>> bm = cat1.talk # save a bound method
>>> um = Cat.talk # equivalent unbound method
>>> del Cat.talk

>>> bm

<bound method Cat.talk of <__main__.Cat object at 0x00A5DC10>>

>>> um

<unbound method Cat.talk>

Remember, if you call a function from an instance, you get a self argument automatically set to that instance. In this case, we aren't calling the method (yet), but it works the same in "binding" the instance to the method.

Let's make a new cat1 and see how this works.

>>> cat1 = CatNew("Fritz", "Hisss")

>>> Animal.home = "Mars"

>>> cat1.talk()
My name is Fritz ... Hisss

I am one of 2 new cats.

>>> bm()

My name is ... Garfield

I say ... Meow
I am a feline from Mars
Not only is the old talk method preserved by the assignment to variable bm, but cat1's instance variables (.name and .sound) are captured in the bound method as well. Only the planet has changed. !!!
This is just like reloading a module. Remember the example in Chapter 16. If we change a variable home in a module Animal, any direct references to items in the old module (x = Animal.home) will not be changed when we reload the module. (x will remain the same.) However, fully-qualified references to Animal.home do get changed when Animal is reloaded.
The same thing happens with bound methods. When the Cat.talk method bound in bm tries to find self.name or self.sound, it finds these variables already attached to its saved cat1. These are the old values "Garfield" and "Meow", which were saved in bm.
When the same bound method tries to find self.home or self.genus it has to do the usual search of the inheritance tree. self.home resolves to Animal.home, and that is the new value "Mars", which we just now set. Bound methods preserve the value of instance variables, only if those variables are in the namespace dictionary of the bound instance. Inherited values can change.
Bound methods are immutable. They don't get re-bound to another instance, even if you pass them to another function, or attach them to a different instance. If you need a different binding, make a fresh one from the new object.

>>> bm2 = cat2.talk
The self argument is set when you first call a method from an instance. It remains set until that call returns, unless you make another call from a different instance within the method you just called (not recommended), or you explicitly re-assign the self argument to something else (a rare situation). Normally, the self is set once and passed unchanged to any embedded methods. { Exercise 8 }
Why Use Classes
A class is much "lighter" than a module. You can put as many classes as you want into a single module. This makes it easy to define large collections of classes.

Classes inherit variables from all their ancestors. Changing a class variable changes that variable in all instances of classes descended from the class where the change is made. If all variables were copied or referenced, rather than inherited, changing a large hierarchy would be difficult and error prone.

Making new instances from a class is easier than copying a module and initializing its contents. A class can be used as a "factory", stamping out many instances, each with a different initialization, and each with its own namespace for variables unique to that instance.

See { LP2E, p.385 } for opinions from experienced programmers on the benefits resulting from the above advantages.

A Larger Class Hierarchy

This section shows a larger example of using classes to define a hierarchy of objects. With a full hierarchy, we can put each data item or function at exactly the level it belongs. In Animals_1, genus is not a good item to associate with Cat. It really ought to be one level up. In this example we also introduce _private variables, and static methods.
It is helpful in understanding large hierarchies to have a sketch showing the inheritance relationship of the classes and the variables defined or set in each class. A sketch made with printable characters only can be included in the module's __doc__ string, as shown in the example here.
Animals_2.py -- a complete OO zoo !!

'''
Animal --> Reptile

------- -------

Animal --> Mammal --> Bovine

------- ------- -------

Animal --> Mammal --> Canine

------- ------- ------

Animal --> Mammal --> Feline --> Cat

------- ------- ------- -------

_numAnimals _numMammals _numFelines _numCats

home genus

__init__() __init__() __init__() __init__()

 .sound .sound

 .name

show() show() show() show()

 talk() talk()

'''
class Animal(object):
 "Ancestor of the Animal hierarchy"
 _numAnimals = 0
 home = "Earth"
 def __init__(self):

 Animal._numAnimals += 1

 def show():

 print "Inventory:"

 print " Animals:", Animal._numAnimals
 show = staticmethod(show)
class Reptile(Animal): pass
class Mammal(Animal):

 _numMammals = 0
 basal_metabolic_rate = 7.2
 def __init__(self, s = "Maa... Maa..."):

 Animal.__init__(self)
 Mammal._numMammals += 1
 self.sound = s
 def show():

 Animal.show()

 print " Mammals:", Mammal._numMammals,
 print " BMR =", Mammal.basal_metabolic_rate
 show = staticmethod(show)

 def talk(self):
 print "Mammal sound: ", self.sound

class Bovine(Mammal): pass
class Canine(Mammal): pass
class Feline(Mammal):

 _numFelines = 0

 genus = "feline"

 def __init__(self):

 Mammal.__init__(self)

 Feline._numFelines += 1

 def show():

 Mammal.show()

 print " Felines:", Feline._numFelines
 show = staticmethod(show)
class Cat(Feline):

 _numCats = 0

 def __init__(self, n = "unknown", s = "Meow"):

 Feline.__init__(self)

 Cat._numCats += 1
 self.name = n

 self.sound = s
 def show():

 Feline.show()

 print " Cats:", Cat._numCats
 show = staticmethod(show)
 def talk(self):

 print "My name is ...", self.name

 print "I am a %s from %s" % (self.genus, self.home)
 Mammal.talk(self)

if __name__ == '__main__':

 a = Animal()

 m = Mammal(); print "m:",; m.talk()

 f = Feline(); print "f:",; f.talk()

 c = Cat(); print "c:",; c.talk()

 print "--- Cat.show() ---"

 Cat.show()

 print "--- cat1.talk() ---"

 cat1 = Cat("Garfield", "Purr")

 cat1.talk()

>>> import Animals_2
m: Mammal sound: Maa... Maa...

f: Mammal sound: Maa... Maa...

c: My name is ... unknown

I am a feline from Earth

Mammal sound: Meow

--- Cat.show() ---

Inventory:

 Animals: 4

 Mammals: 3 BMR = 7.2

 Felines: 2

 Cats: 1

--- cat1.talk() ---

My name is ... Garfield

I am a feline from Earth

Mammal sound: Purr

>>>
[Note 1] The leading underscore to mark the privacy of a variable is just a convention, not something enforced by the language. It means "Don't change this variable, other than by using the methods provided." In this case, the counts in the _num... variables should be changed only by the __init__ methods, never some direct manipulation by the user.

[Note 2] This awkward syntax may be improved in Python 2.4. { PEP 318 }
[Note 3] Instead of calling a method in a specific class, you could generalize this to call the __init__ method from whatever class is the parent of Mammal. { Cooperative Super Calls }
[Note 4] Classes do not follow the LEGB scope rules. Class variables are in their own isolated scope. They can be accessed only with a fully qualified name.

[Note 5] In the Cat.talk method definition above, we call a method Mammal.talk, which then prints self.sound How does Mammal.talk know which sound to use (the one from Cat or the one from Mammal)? It depends on the self instance at the time the value of self.sound is needed. In the example above, that instance is 'c', an instance of Cat. So self.sound is equivalent to c.sound, and this has been set to "Meow". See the { Gotchas } section for further discussion.

Advanced Topics

Robust Programming

The Animals_2 example in the previous section has some features that may cause problems in a large program that needs to be enhanced and maintained by programmers who may not be expert in every facet of the program. The examples in this section illustrate some techniques to make the Animals_2 example more robust.

Not all of these techniques are worth the effort in every situation. You've got to anticipate how your program will grow and be modified in the future, then decide how much effort to make up-front in "bullet-proofing". You may want to be safe and make the additional effort early, even though you don't anticipate the need. Many programs which were never intended to become widespread, have become enormous maintenance headaches, because the original programmers didn't have even a few hours to make the initial design more robust.
In Animals_2 there are several direct calls to methods in specific classes outside the current class. These could cause a problem if other classes are added later, and the intent of the direct calls was not to access a particular class, but whatever class happens to be the parent of the class from which the call is made. The __init__ methods, for example, must call the parent class to ensure that the counts in all classes are updated. { Examples\Animals_2c.py } shows how to use { cooperative super calls } to avoid some of these direct references. This is an example of "encapsulation", making each class self-contained, so that it can survive changes in external code.
Another example of a lack of encapsulation in Animals_2 is the "non-locality" of the num... variables. Keeping a total in each class, which is dependent on totals in other classes, can lead to data which is "out-of-sync" from one class to another. If someone adds a class in the hierarchy somewhere below Mammal, and forgets to add a call to the __init__ function from its parent, then all _num variables in classes above the new one will fail to update when instances of the new class (or any class below the new one) are created.
You can imagine problems like this might occur also, if updating data in the hierarchy were to depend on the continuity of an online session, or the absence of program crashes. These kinds of interruptions are inevitable in a large system, and can cause very subtle errors which are difficult to track down. Data in class Animal is wrong. It happens about once a day, usually when Karen in accounting updates the Cat inventory. But there have been no changes in either Animal or Cat since the problem started. Oops, the problem is in Feline, which was "fixed" three weeks ago.
The general solution to "out-of-sync" problems is to avoid redundancy in the data, and each time an item is needed which is dependent on other data items, re-calculate it from the original independent data. So instead of _numAnimals holding a potentially corrupt total of all instances in the hierarchy, we could use a numAnimals() function, which re-calculates a fresh total each time it is called. _numAnimals and other _num... variables can be replaced with a simpler _count in each class, which holds just the count of that classes instances.

Even with these changes { Examples\Animals_2c.py } is still not "bullet-proof", however. The _count variables are "redundant" with the actual count of instances alive in the program. For a technique to count instances, see the example under { Weak References } below.

At this point, we need to think of all possible threats, and decide how much effort we want to make to avoid those threats. There is no absolute rule that all programs should be maximally robust. As an early example of Python classes, Animals_2 is sufficiently robust, and adding more armor will distract from the basic teaching purpose. On the other hand, if this were a program to track incoming missiles, we might want absolute assurance that no program crash or interruption will corrupt the count of missiles.

If this were a program in which we expect a large number of classes to be added at various places in the hierarchy, we may want to automate the generation of classes so that the programmer can specify a just the parts that are unique to each class, and have all the common parts be generated reliably. See the discussion of { Metaclasses } for a technique to automate the initialization of classes. See also Animals_JM.py at http://ece.arizona.edu/~edatools/Python/Exercises for a program that fully automates the generation of new classes.
These techniques make creation of new classes automatic, but they also add complexity, which can itself have a negative impact on robustness. It may be more difficult to make unique and unanticipated changes in each class. Class generators are more robust only if the classes you need to generate follow the expectations that are built into the generator. Otherwise, you may have less maintenance problems if you just keep your program as simple as possible, and emphasize in your documentation what needs to be done to make anticipated modifications. The simplicity of Python makes the "keep it simple" option more attractive than in other languages.
To summarize, robust classes should use _private variables to encapsulate data that is not needed outside the class, and should strive to minimize dependence on functions or data outside the class. If the cost of re-calculation is not too high, you should store only independent data and avoid redundant data which can get out-of-sync. Metaclasses can provide a default setup for new classes, and avoid forgetting something important. "Cooperative super calls" can avoid some direct references to external classes. Weak references may be useful as a way to keep track of current instances. Ultimately, there is always a tradeoff of robustness vs simplicity, efficiency, initial programming cost, and flexibility of the final program.
Multiple Inheritance

In most programs, class hierarchies are arranged so that each level inherits from only one class above it. Multiple inheritance is a feature that allows you to mix data and functions from multiple objects into one class. Say you want a Mutt that is basically a Dog, but has characteristics of both a Spaniel and a Labrador.
class Mutt(Dog, Spaniel, Labrador):
Larger example and discussion. ... { Mixin Classes }
Method Resolution Order (MRO) ...

 { Gotcha, LP2E p.377 }

 { http://python.org/2.2.3/descrintro.html#mro } – GvR's brief discussion of MRO.

 { http://python.org/2.3/mro.html } -- Michele Simionato's thorough explanation.
In most cases, even with multiple inheritance, Python's MRO is simple, but as GvR says, the full C3 algorithm with monotonic superclass linearization, is "a bit difficult to explain". Fortunately, you don't need to know all this. To see the path Python actually follows in searching the ancestors of any class, just look at the __mro__ attribute. In Animals_2 for example, the MRO of Cat is just what you would expect:

>>> Cat.__mro__

(<class '__main__.Cat'>, <class '__main__.Feline'>,

 <class '__main__.Mammal'>, <class '__main__.Animal'>, <type 'object'>)
Intercepting Built-in Methods

The inheritance mechanism in Python provides an interesting and very powerful feature. Most of the operations that Python performs on objects are implemented internally as methods of whatever type the object happens to be. That means you can over-ride those methods by defining your own methods with the same name. So if you want to do something special when an object is deleted, you can define a __del__ method for that object, which will "intercept" the call to the internal __del__ method, and do something else.

This is often called "overloading" an operation, but I prefer the more descriptive and more general term "intercepting". I may use "overloading" when referring to the fact that you can provide may different methods for one operator "+", thereby "overloading" that operator. This really isn't a stressful thing to do. It just means that when you have an expression a + b, the meaning of the symbol + depends on the type of the objects a and b. If they are integers, you get integer addition. If they are strings, you get concatenation. If they are objects of a class in which you have intercepted the built-in method __add__, you will get the result of executing the __add__ method you defined, just as if you had called a.__add__(b)
There are dozens of special methods, all well-documented in the references below. In fact, Python seems to make great efforts to ensure that you have a "hook" to customize just about any operation you want. Here, we will just give a short example.
Let's say you want do decrement the _count variables each time an instance of an Animal class is deleted. Add the following method to the Animal class in Animals_2.py.
 def __del__(self):

 for cls in self.__class__.__mro__[:-1]:

 cls._count -= 1

This will decrement the _count variable in all ancestors of the self instance. We trimmed off the last class in the MRO, because that happens to be object, not one of our Animal classes.
When you execute the command del cat1, the __del__ method above is called first, then the object cat1 is deleted. Note: If there are other references to the object cat1, __del__ will not be called. This happens only when the reference count goes to zero, and the object is no longer available to your program. Imagine trying to keep track of reference counts in your own Animal classes. The great power of Python's special methods is in the fact that most of the work is done for you, and the part you provide can be very simple.
{ pp. 314-316, 327-336 in Learning Python, 2nd ed. and other pages throughout the OOP chapters.}

{ "Special Methods", pp.90-99 in "Python in a Nutshell" }

{ "Special Method Names", section 3.3 in "Python Reference Manual" }
Metaclasses

Metaclasses are classes which serve as templates for other classes, just as classes serve as templates for instances. Normally, the built-in standard metaclass object 'type' serves as the template for all classes, and this "templating" stuff works behind the scenes, so you don't have to think about it. You can over-ride this behavior, however, and specify your own metaclass! Why would you ever want to do this?

Let's say you want all new classes have some particular attributes, not just shared attributes that they inherit from an ancestor class, but their own copy of some data or method. In the Animals_2 example, we might want to add a bunch of classes under Mammal with names like Canine, Equine, Bovine, Porcine, Caprine, Ursine etc. Each new class must have its own class variable _count. A metaclass will allow us to add this variable automatically, and not rely on the zookeeper to remember this step whenever he adds a new species to the zoo.

Metaclasses are well beyond the scope of this introduction, however, we will show a simple example that you can use as a pattern to do similar things. For a more complete discussion of metaclasses see the references below. Otherwise, just follow this example, and don't change anything you don't understand. We will follow the convention of naming the metaclass metaXXX, where XXX is the class in which we are over-riding the default metaclass.
class metaAnimal(type):

 def __init__(cls, classname, bases, classdict):

 cls._count = 0

 ... other class attributes here

class Animal(object):

 __metaclass__ = metaAnimal ## over-ride the default metaclass
 ... continue with normal class definition
By adding just one line to the top class in our hierarchy, and a very simple metaclass, we are able to "intercept" the creation of a new class, and automatically add any attributes we want when the class is "instantiated" from its metaclass. In a metaclass, __init__ initializes each new class much like __init__ in a normal class initializes each new instance. Any new class which inherits from Animal, or any subclass of Animal, will see that __metaclass__ has been set, and will look for an __init__ function in the metaclass. If we say class Dog(Mammal): we will get a new class Dog that already has in its __dict__ a _count variable initialized to zero.
The calling sequence for initializing new classes is different than for new instances. Instead of self, the __init__ method receives the newly-defined class, its classname, its base classes, and the dictionary of attributes from the class statement. You can ignore the last three, and add attributes to the new class by just attaching them to the first argument of the __init__ method.
Metaclasses are a powerful tool for language developers, but we should resist the temptation to overuse and abuse them. As one of the Python developers stated "Metaclasses are deeper magic than 99% of users should ever worry about." {Tim Peters, comp.lang.python 12-22-2002}. The use-case here is one of the few I have found that makes sense for the 99%.

{ Exercise 9 } { Exercise Zoo3_DMQ2a.py }

{ "New-Style Classes" at http://python.org/doc/newstyle.html }

{ "Metaclasses", Alex Martelli, pp.100-103 in Python in a Nutshell, O'Reilly, 2003.} A good explanation of exactly what happens when a class is created, and a substantial custom metaclass example.
Cooperative Super Calls

super(cls,self).meth(arg)

This calls method meth from a class in the MRO (Method Resolution Order) of self. The selected class is the first one which is above cls in the MRO and which contains meth.

The 'super' built-in function actually returns not a class, but a 'super' object. This object can be saved, like a bound method, and later used to do a new search of the MRO for a different method to be applied to the saved instance self.
Cooperative supercalls are most useful when you have a complex and evolving class structure, and you need to call a method once and only once from each ancestor class whenever an instance of any class is created. This is a common requirement with __init__ methods.

Imagine we have the following class structure, and we want to add a Feline class between Mammal and Cat.
Animal -> Mammal -> (Feline) -> Cat

\ - - - -> Mammal2 - - - - - - -> /

With normal supercalls, like Mammal.__init__(self), you have to do some editing in Cat after adding the Feline class, and change Mammal to Feline. You may even have to call the original programmer if you are not sure whether he intended to call specifically Mammal, or just whatever class is the parent of Cat. Cooperative supercalls avoid this potential source of error, and automatically adapt to the presence of the new parent class.

Run the program in Exercises/superCall.py and notice the output. The total Animal._count should be 3. It is 4 because Animal.__init__ was called from both mammal classes. Each Cat counts as two Animals!! We could remove the supercall from Mammal2.__init__, but then the Animal count would be wrong for instances of class Mammal2. Cooperative supercalls are a neat way to ensure that the __init__ in each ancestor of Cat gets run once and only once for every new Cat.

Try replacing all the supercalls in this example with the appropriate cooperative super call. Verify that the counts of all classes are correct after adding an instance of each class. Now add the Feline class and make sure Cat inherits from both Feline and Mammal2. How many lines outside of the new class Feline did you have to edit? Verify the counts again. Add a print statement at the top of each __init__ method, and create a new Cat instance, so you can verify that these methods are called in the order of the MRO from Cat.
>>> Cat.__mro__

(<class '__main__.Cat'>, <class '__main__.Feline'>,

 <class '__main__.Mammal'>, <class '__main__.Mammal2'>,

 <class '__main__.Animal'>, <type 'object'>)

{ "Cooperative Superclass Method Calling", Alex Martelli, pp.89-90 in Python in a Nutshell, O'Reilly, 2003.}

{ 'Cooperative Methods and "super" ', Guido van Rossum in "Unifying Types and Classes in Python 2.2", http://python.org/2.2.3/descrintro.html#cooperation }

Weak References

A weak reference is a reference to an object that is not included in the normal reference count that is associated with all objects. When all normal references are gone, the weak reference will disappear automatically. It has no "life" of its own. What can you do with this bizarre feature? According to the Python Library Reference, section 3.3 "A primary use for weak references is to implement caches or mappings holding large objects, where it's desired that a large object not be kept alive solely because it appears in a cache or mapping."

Here is an example of using weak references in a mapping (dictionary). Let's say we absolutely must have correct counts for every instance in our Animal hierarchy. We cannot even depend on the integrity of the independent _num... variables in each class. We must do an actual count of the currently alive instances in each class, whenever a count is required. Python does not keep track of instances the way it does __subclasses__, so our quest for absolute reliability is turning into a bit of a challenge.

Weak references can provide a solution to this problem [1]. We can attach a special WeakValueDictionary to each class, and in that dictionary, add a reference to each instance as it is created. Then, when we need a count for a particular class, we can go straight to its _instances dictionary, and count the items. (len(Cat._instances)).
When the last normal reference to a Cat instance is deleted, its weak reference in Cat._instances is automatically deleted. This is done by the machinery inside Python, and does not depend on someone remembering to decrement _numCats whenever a Cat instance is deleted.
{ Examples/weakrefs.py }
[Note 1] As always, there are limitations. Nothing is ever absolute when it comes to reliability. In this case we are depending on the Python interpreter to immediately delete a weak reference when the normal reference count goes to zero. This depends on the implementation details of the interpreter, and is *not* guaranteed by the language. Currently, it works in CPython, but not in JPython. For further discussion, see the post under {"... weakref behavior" by Tim Peters in comp.lang.python, 6/11/04}.

One other limitation – if there is any possibility of an instance you are tracking with a weakref being included in a cycle (a group of objects that reference each other, but have no references from anything outside the group), then this scheme won't work. Cyclic garbage remains in memory until a special garbage collector gets around to sniffing it out.

Odds and Ends

classmethod – Class methods are not essential, but they are a convenience that can save typing of class names in certain situations. { see pp. 372, 381-382 in LP2E.} also {David MacQuigg's reply to Duncan Booth in comp.lang.python 6/1/04}. { instance, static, and class methods, LP2E p.381 }
Pseudo-Private Variables – see {pp. 366-369 in LP2E, "name mangling"}. I think the need for these is very limited, but a good example could show me otherwise.
Gotchas

{ see also Gotchas, LP2E pp.376-384 }
Changing a class may not affect existing instances

It depends on whether the variables are attached to the instance or the class. Only inherited variables (not attached to the instance) will respond to changes in the class.
Instance variables must have a "self" instance
If a method definition contains instance variables, it must be called with an instance of the correct class as the first argument.
class Mammal(object):

 def talk(self):

 print "I am a mammal."

 self.make_noise()

 def make_noise(self):

 print "I make mammal noise."

>>> Mammal.talk()

...
TypeError: unbound method talk() must be called with Mammal instance as first argument (got nothing instead)
>>> mam1 = Mammal()

>>> mam1.talk()

I am a mammal.

I make mammal noise.

>>>
Calling a bound method within another method changes the "self "
This error is a little more subtle. There is no error message, just a wrong result. If you can follow this step-by-step, you will have a good understanding of how instance variables work with self.
class Mammal(object):

 def talk(self):

 print "I am a mammal."

 self.make_noise()

 def make_noise(self):

 print "I make mammal noise."

class Cat(Mammal):

 def talk(self):

 print "I am a cat."

 mam1.talk()

 def make_noise(self):

 print "meow !!"

mam1 = Mammal(); cat1 = Cat()

>>> cat1.talk()

I am a cat.

I am a mammal.

I make mammal noise.

>>>

You might have been expecting the cat to say "meow !!" instead of just the generic mammal noise. Here is what happened: The first function call cat1.talk() resolves to Cat.talk(cat1), which calls mam1.talk(), which resolves to Mammal.talk(mam1), which calls self.make_noise() for the current self, which happens to be 'mam1'. 'mam1.make_noise()' resolves to Mammal.make_noise(mam1), which is not the function we want.
The problem arose when we called mam1.talk(). This changed the self from 'cat1' to 'mam1'. What we should have done is called Mammal.talk(self). Because Mammal is a class, not an instance, we will then get the desired function without changing the self instance. Edit the function Cat.talk and change the call to Mammal.talk(self).
 def talk(self):

 print "I am a cat."

 Mammal.talk(self) <== No change in self
>>> cat1.talk()

I am a cat.

I am a mammal.

meow !! <== Now it works.

>>>
In general, you should not, within a method definition, be calling methods from specific instances. That can make your definition weirdly dependent on whatever the calling program sets up as instances. If you need a method from another class, call that method directly from the class, not from one of its instances. If you really must change the self instance within a method definition, do it explicitly with

Mammal.talk(mam1)
In most programs, you will just call someClass.talk(self) It is only in rare cases that you will need to change the self variable.
Exercises

1) Class and Instance Namespaces
Run the program Animals_1.py, then explore all four objects with the following commands. How can cat1.home produce a useful result when the namespace of cat1 is empty?
for cat in cat1, cat2: print cat.__dict__, "HOME IS -", cat.home

for cls in Cat, Animal: print cls.__dict__
2) Inheritance vs Referencing

Run the program Animals_1.py, and without terminating the program, change the variable Animal.home. Verify that the change is seen by cat1. Now add an external reference in the Cat class Cat.home = Animal.home. Show that changes in Animal.home are now invisible to cat1. Finally, delete Cat.home, and show that the "live link" from cat1.home to Animal.home is still there.
3) Passing self to a Method
Explain the results of each of the four printouts below. Is there a difference between calling a module-level function and calling the same function defined in a class?
def func(*args): return args

class Cat:

 def func(*args): return args

cat1 = Cat()

print func, func(1,2,3)

print cat1.func, cat1.func(1,2,3)

print Cat.func, Cat.func(cat1,1,2,3)

print Cat.func(1,2,3)
4) Differences between Methods and Functions

In Animals_1.py delete the first two print lines of the Cat.talk method, and copy it to the module level. You now have a simple method and an identical function that can be called with any instance as its first argument.

def talk(self):

 print "I am a %s from %s" % (self.genus, self.home)

Experiment with calling the function and the method using instances c = Cat() and a = Animal(). Use both forms of calling the method: c.talk() and Cat.talk(c). Can you find any differences in the behavior of a method compared to a function? Explain all error messages. Continue the experiment with an instance of a subclass of Cat.
5) Inheritance and Namespace Dictionaries

Repeat the Cat.numCats example in this section, but using your own class and instances, and showing the __dict__ keys at each step. Explain what is happening at each step.

6) Scope of Class Variables

Call each of the methods in the following examples, and explain the error messages.
Example of nested functions and classes {see LP2E p.383}
v0 = 'v0'

def generate(): # a "class factory"

 v1 = 'v1'

 class C1:

 count = 1

 def m1(self):

 print count

 def m2(self):

 print v0, v1, C1.count

 def m3(self):

 print generate.C1.count

 return C1

G1 = generate() # returns a new class

g1 = G1() # an instance of that class

Same structure, but with an outer class instead of a function

v0 = 'v0'

class Generate:

 v1 = 'v1'

 class C1:

 count = 1

 def m1(self):

 print v0

 def m2(self):

 print v1

 def m3(self):

 print C1.count

 def m4(self):

 print Generate.C1.count, self.count

G2 = Generate.C1 # a class

g2 = G2() # an instance

7) Scoped vs Inherited Variables

Run the code from exercise 6, and explain the following results:
>>> g1m2 = g1.m2

>>> v0 = 'v0_updated'

>>> v1 = 'v1_new'

>>> count = 2

>>> del generate

>>> g1m2()

v0_updated v1 1

>>> G1.count = 2

>>> g1m2()

v0_updated v1 2

8) Passing self to an embedded method

9) Alternatives to Metaclasses

a) Add to Animals_2 a function that returns a class. The header line should look like:
def newAnimal(bases=(Animal,), classdict={}):
The returned class should have __bases__ = bases, and an extra class variable _count = 0. Use this function to generate a Canine subclass of Mammal. Create some instances of Canine, and verify that the _count is correct. What are the disadvantages of this technique compared to the metaclass example in this section?
b) In Animals_2 add a _count = 0 variable to the Animal class, and the following lines to Animal.__init__:
 for cls in self.__class__.__mro__[:-1]:

 cls._count += 1

Notice that the last line is both a reference and an assignment, grabbing the _count variable, if necessary, from the Animal class, and adding it to whatever class doesn't already have it. Seems like this is just what we want. What is the problem with this technique? Show an example of how it fails. Is there any way to fix it?
Exercises from Learning Python, 2nd ed.
LP1) Zoo Animal Hierarchy – Ex. 8 on p. 389

More practice with inheritance and setting up a hierarchy of classes.

LP2) The Dead Parrot Sketch – Ex. 8 on p. 389

Using "composition" to make complex objects from simpler ones.
LP3) Class Tree Links – Ex. 6 on p. 387

A good example of multiple inheritance using a "mixin" class. This example also shows over-riding the function __repr__ to change the behavior of the print statement for instances of any class inheriting from our mixin class.
Solutions

1) Class and Instance Namespaces

>>> for cat in cat1, cat2: print cat.__dict__, "HOME IS -", cat.home

{} HOME IS - Earth

{'home': 'Tucson'} HOME IS - Tucson

>>> for cls in Cat, Animal: print cls.__dict__
{'numCats': 0, '__module__': '__main__', 'genus': 'feline', 'set_vars': <function set_vars at 0x00A84130>, 'talk': <function talk at 0x00A84170>, '__doc__': None}

{'__module__': '__main__', 'numAnimals': 0, '__dict__': <attribute '__dict__' of 'Animal' objects>, 'home': 'Earth', '__weakref__': <attribute '__weakref__' of 'Animal' objects>, '__doc__': None}

>>>
cat1.home inherits its value from Animal.home, since there is no value defined in any lower class or instance (Animal -> Cat -> cat1).
2) Inheritance vs Referencing

>>> cat1.home

'Earth'

>>> Animal.home = 'USA'

Change the original
>>> cat1.home

Descendents change also
'USA'

>>> Cat.home = Animal.home
Add an external reference
>>> cat1.home

'USA'

>>> Animal.home = 'Arizona'
Change the original
>>> cat1.home

Referenced value is frozen
'USA'

>>> del Cat.home

Delete external reference
>>> cat1.home

Inherited value still available
'Arizona'
>>>

Every access to cat1.home does a fresh lookup, following the inheritance tree from cat1 -> Cat -> Animal. Changing Animal.home in a running program will immediately affect all descendents.
3) Passing self to a Method

>>> print func, func(1,2,3)

<function func at 0x00A84070> (1, 2, 3)

No special first argument in a normal function call.

>>> print cat1.func, cat1.func(1,2,3)

<bound method Cat.func of <__main__.Cat instance at 0x00A59698>>
 (<__main__.Cat instance at 0x00A59698>, 1, 2, 3)

Accessing a method from an instance returns a bound method. Calling() that bound method automatically inserts the instance ahead of the other arguments.

>>> print Cat.func, Cat.func(cat1,1,2,3)

<unbound method Cat.func> (<__main__.Cat instance at 0x00A59698>, 1, 2, 3)

Accessing a method from a class returns an unbound method. An instance must be explicitly inserted as the first argument to call an unbound method.

>>> print Cat.func(1,2,3)
...

TypeError: unbound method func() must be called with Cat instance as first argument (got int instance instead)

>>>
4) Differences between Methods and Functions

>>> talk

<function talk at 0x00A84170>

>>> talk(c)

I am a feline from Earth

>>> c.talk

<bound method Cat.talk of <__main__.Cat object at 0x00A82E10>>

>>> c.talk()

I am a feline from Earth

>>> Cat.talk

<unbound method Cat.talk>

>>> Cat.talk(c)

I am a feline from Earth

>>> talk(a)

...

AttributeError: 'Animal' object has no attribute 'genus'
Even as a function, the talk method still expects an object with the right attributes.
>>> a.talk()

...

AttributeError: 'Animal' object has no attribute 'talk'
To call a method from an instance, the method must be in the class of the instance or in one of its ancestor classes.
>>> Cat.talk(a)

...

TypeError: unbound method talk() must be called with Cat

instance as first argument (got Animal instance instead)

The method call does some extra type checking on the first argument, and won't allow anything but an instance of Cat. The function, on the other hand, will allow any first argument, and the trouble occurs in the function body when the argument doesn't work as expected.

>>> class SubCat(Cat): pass

>>> sc = SubCat()

>>> talk(sc); sc.talk(); Cat.talk(sc)

I am a feline from Earth

I am a feline from Earth

I am a feline from Earth
Instances of a subclass of Cat will work just like an instance of Cat.
5) Inheritance and Namespace Dictionaries

6) Scope of Class Variables

>>> g1.m1()

NameError: global name 'count' is not defined

count is in the gap between two function scopes. It is not seen from m1(). It is then assumed to be a global.

>>> g1.m2()

v0 v1 1

No problem accessing any variable from an enclosing function, even if there is a class scope along the way.

>>> g1.m3()

AttributeError: 'function' object has no attribute 'C1'

Local names in a function namespace are not attributes of the function. Therefore, we can't access variables from a class within a function, even with a fully-qualified name.
>>> g2.m1()

v0

Module-level variables (globals) are always accessible.

>>> g2.m2()

NameError: global name 'v1' is not defined

v1 is in the gap between the global scope and the local scope of m1().
>>> g2.m3()

NameError: global name 'C1' is not defined

C1 is in the same gap as v1.

>>> g2.m4()

1 1

Variables in nested classes are accessible with fully-qualified names (Generate.C1.count), as long as there is not a function scope along the way. Instance variables (self.count) use inheritance, and don't depend on scope at all.
7) Scoped vs Inherited Variables

>>> g1m2 = g1.m2

This saves the method g1.m2 and prevents deletion of its required variables (a "closure").
>>> v0 = 'v0_updated'

>>> v1 = 'v1_new'

>>> count = 2

We have replaced all the values needed in m2 with new values defined at the global level.

>>> del generate

This deletes the function generate, but not the method m2, which now has an independent reference in g1m2. Since m2 is still alive, so are any variables it refers to, including v0, v1 and C1.count.
>>> g1m2()

v0_updated v1 1

Within g1m2, v0 is a reference to a global variable, so it gets a new value when the name v0 is redefined at the global level. v1 and C1.count still refer to the values they had before the function generate was deleted. v1 is no longer accessible, but C1.count is.
>>> G1.count = 2

>>> g1m2()

v0_updated v1 2

Here, it looks like the inherited variable G1.count takes precedence over the lexically scoped variable C1.count. Actually, what is preserved in g1m2 is not a reference to the variable C1.count, but a reference to a class definition that was known as C1. C1 no longer exists by that name, but the class object in memory was returned by the generate function to the global level, where it was given a name G1. When we change G1.count we are actually changing in memory the same value that g1m2 calls C1.count.
8) Passing self to an embedded method

9) Alternatives to Metaclasses

def newAnimal(bases=(Animal,), classdict={}):

 class C: pass

 C.__bases__ = bases

 classdict['_count'] = 0

 C.__dict__ = classdict

 return C
a) The newAnimal function is not called automatically when you generate a new class via a normal class statement. The returned class does not have a __name__ attribute. The new class is an old-style class. ('object' is not a base class, because that causes problems with the assignment to the __bases__ variable.)
b) The problem with using an inherited _count from class Animal, is that the initial value is not zero after the first Animal is created. So if we have three Animals already, before adding the first Reptile, the Reptile._count starts at three! We could add another class above Animal, just to hold initial values, but then we have to be careful not to disturb those initial values with some programming error, like incrementing all the _counts in an __mro__. The problem in this example can be fixed, but at this point, metaclasses start to show an advantage in providing a simpler, and more robust general solution.
LP1) Zoo Animal Hierarchy – Ex. 8 on p. 389

Exercises\ExLP6p8.py
LP2) The Dead Parrot Sketch – Ex. 9 on p. 389

Exercises\ExLP6p9.py
LP3) Class Tree Links – Ex. 6 on p. 387

Exercises\ExLP6p6c.py In this solution, we have written two classes that "extend" the original Lister class to provide more detail in the output of __repr__(). Each extension has a unique __repr__(), which over-rides similar methods from any superclass. We had originally over-ridden the attrnames() method in Lister, but since the only change was to list names from a class instead of an instance, we decided to modify the original method in Lister, and make it work with either an instance or a class. This was done by making it a static method. See if you can do the same for the bases() method in BasesLister and thereby eliminate the cbases() method in SuperLister.
Unbound methods must be called with an explicit 'self' [5]

Use a fully-qualified name to access the _numFelines class variable. [4]

Calling an ancestor's initiator is a common pattern. Use this when you want to add additional steps beyond a shared initialization. [3]

doc strings work with classes.

Wrapper function to suppress the insertion of 'self' in methods that need to work without an instance. [2]

Variables with a leading underscore are _private [1]

PythonOOP.doc
Page 13 of 27
DMQ 7/1/04

