Proposed Prototype Syntax
The goal of this proposal is a simpler class syntax for Python. The essence of this simplification is a unification of functions and methods. All methods in the new syntax look identical to normal functions. This will make teaching OOP in Python easier, because students are already familiar with functions. See Prototypes.doc at http://ece.arizona.edu/~edatools/Python for an example of a simple presentation of the new syntax.
It is vital that any changes we make be not so radical that existing Python programs cannot be automatically translated to the new syntax. No improvement in syntax would be worth the loss of ten years development in Python.

The changes from Python are quite simple, but they have far reaching consequences. I've listed what I see as the benefits. I need to collect some more feedback to get a good summary of the Pros and Cons.
Example of Simplified Classes (Prototypes)
Animal --> Mammal --> Feline --> Cat
------- ------- ------- -------
numAnimals numMammals numFelines numCats

home genus
__init__: __init__: __init__: __init__:
 .sound .sound
 .name

show: show: show: show:
 talk: talk:
proto Animal(Proto): # Inherit from the primitive Proto.

 numAnimals = 0

 home = "Earth"

...

see http://ece.arizona.edu/~edatools/Python/ for the complete example.
...
proto Cat(Feline):
 numCats = 0

 __init__(n = "unknown", s = "Meow"):

 Feline.__init__()

 Cat.numCats += 1

 .name = n # Set instance variables.

 .sound = s
 show(): # Define a "static method".
 Feline.show()

 print " Cats:", numCats # Simplified scope rules.
 talk():

 print "My name is ...", .name

 print "I am a %s from %s" % (.genus, .home)

 Mammal.talk() # Call an unbound function.
 print __self__ ### Diagnostic check.

cat1 = Cat() # Create instance.
with Cat: # Modify prototype variables.

 home = "Tucson"
 genus = "feline"

 name = "Garfield"

Note: The with statement, like GOTO, may cause more bad programming and provide very little benefit in return. Instead of changing a prototype in the middle of a program, the Python way is to either go back and edit the class, or derive a new class which over-rides items in the old class. I've left it in for now, in case there is any further discussion.

>>> cat1.talk()

My name is ... Garfield
I am a feline from Tucson
Mammal sound: Meow
<__main__.Cat object at 0x00A894B0>

>>> cat2 = cat1("Fluffy", "Purr") # Clone an instance.
Note: After much discussion on comp.lang.python and the Prothon mailing list, I am persuaded that the benefits of prototype behavior are not worth changing the core language of Python. Cloning (the ability make one prototype a copy of another) is easily provided in Python by other means (see "Prototypes in Python", Michele Simionato, comp.lang.python, 4/28/04). Again, I will leave it in for now, in case there is further discussion.

Changes from Current Python

Keyword class is changed to proto

All methods have the same calling sequence, identical to a simple function.

Function header lines are re-arranged. Lambda form is similar.
self. is replaced with a leading dot on instance variables.

self is eliminated from the argument list and replaced with a global __self__
Current instance is available if ever needed via __self__
Variables in enclosing classes may be referenced just like enclosing functions.
Instances can have their attributes modified in a with block.
Instances may be "cloned" from other instances.
Benefits of Proposed Syntax
Unification of all function forms (bound, unbound, static, class, lambda). All will have the same form as a normal function definition. This will make it easier to teach OOP. Students at this point already understand functions and modules. OOP is a small step up. A prototype will look just like a module (except for the instance variables). See Parallels between Prototypes and Modules below. A full presentation of OOP, like pages 295-390 in Learning Python, 2nd ed. will likely be 1/2 the number of pages. Not only is the basic presentation simpler, but we can eliminate a lot of discussion of lambda functions, static methods, etc.
Using a global __self__ variable avoids the magic first argument, and makes it easier to explain instance variables. See the sections below comparing a brief explanation of instance variables in Python vs the simplified form.
All attributes of a prototype (both data and functions) will be in a neat column, making it easier to find a particular attribute when visually scanning a program. Understanding the structure of a program will be almost as quick as seeing a UML diagram.

Lambda keyword will be gone. No special syntax to learn. An anonymous function using normal function syntax can be extremely compact. (:x,y:x+y)
Method definitions will be less cluttered and less typing with __self__ as a global variable.
The Rule of Least Surprise will apply to class variables (numCats). Access to these variables will be the same as to variables in enclosing functions. There will be no "gap" in the LEGB rule when classes are involved. In fact, we can simplify the rule to LEB, since the "Enclosing" scopes will now always go all the way up to and include the module level.
Changing numerous attributes of an instance will be more convenient using a with block. (need use case)
Cloning one instance from another will allow classless programming. (need use case)

Migration to Python 3 will be automatic and reliable. ???
Pros and Cons of the Proposed Syntax
Classlessness
Con: The proposed syntax is not purely classless. This is important because ... ???
Discussion:

The "prototypes" in the proposed syntax are essentially classes. Using a different keyword "proto" is intended to facilitate the transition from one class syntax to another. The new keyword is also suggestive of "prototype", a concept more meaningful to non-CIS students than "class".

Unification of Methods and Functions

Pro1: Less to learn.

Con1: Experts don't care. Beginners don't need advanced method syntax.

Discussion:

DMQ: My concern is for the beginners. I can't accept the argument that they should just avoid anything but the most common method style (with self as the first argument). The need for static methods arises naturally when students start writing programs. True, they can learn to structure their programs so as to avoid this need, but this is a little like learning to write programs not using the letter q. It can be done, but there is a price to pay in learning this strange limitation, and in the clarity of the resulting programs. In the Animals.py example, all the show methods would need to be moved outside their classes to make them into normal functions. The program structure would not be as clear.
See comp.lang.python, 5/24/04 4:17PM, DMQ response to Greg Ewing:

>> The need for static methods will arise when the student first writes

>> a method that needs to work without a current instance.

>

>But why would he need such a method, as opposed to a plain function?

It may be that the method he has written fits most naturally in a particular class. This is for him to decide, and we should assume he knows his program structure better than we do.

class Bag:

 def __init__(self, **kwargs):

 self.__dict__.update(kwargs)

 def load(infile):

 strng = infile.read()

 exec('bag = Bag(\n' + strng + ')')

 return bag

 load = staticmethod(load)

The load method is unique to Bags, and it belongs in the Bag class. To me this is a more fundamental consideration than whether or not the method uses instance variables.

Distinguishing methods by whether or not they use instance variables seems like distinguishing them by whether or not they use global variables. We wouldn't want to move all "global methods" outside their classes, just because of some quirk in the syntax required it.

Pro2: Replace lambdas with standard function syntax.
Con2: The keyword lambda is important because of its association with lambda calculus.

Global __self__

Pro1: Allows the unification of methods and functions.

Pro2: Explanation of instance variables is simpler.

Con2: Using __self__ instead of a special first argument is unnecessary magic.
Discussion:

DMQ: I agree that magic is bad, but I disagree that the magically inserted first argument on *some* function calls is less than the magic of *always* setting the current instance to a global variable __self__. Students at this point already understand global variables. Yet they frequently stumble on the different calling sequences for bound and unbound functions. (cat1.talk() vs Cat.talk(cat1)) Even experts can get confused as to when the magic first argument is used. See Exercise 3 at http://ece.arizona.edu/~edatools/Python/Exercises
Using a global __self__ puts the current instance in a much more convenient place, always available, but never in your way. This "out-of-your-way" aspect of the proposed __self__ is the key to getting a consistent calling sequence for all functions and methods. If you want to call a method, but you don't have a current instance, no problem. Just call it like any other function. We don't need special syntax for a "static method", and tricky rules as to when a static method is needed.
It is hard to judge the complexity of a proposed syntax by looking with a microscope at something as small as setting a global variable. The way I would make the comparison is by looking at the length of a "textbook" explanation of instance variables. I believe the proposed syntax will take about half the number of lines to write a good explanation. See the examples at the end of this proposal.
Pro3: Less typing and less clutter in method definitions.

Con3: Can use "s" or "_" instead of "self" to minimize typing and clutter.

"Assignment" Syntax for Function Definitions
Pro1: In a prototype definition, you can see all the variables at a glance in one column.
Pro2: Emphasize the similarity between data and functions as attributes of an object.
Symbol instead of def Keyword
Pro1: Eliminates the need for special syntax in lambda functions.
Con1: The proposed syntax is ugly ("punctuation-itis").

Discussion:

DMQ: My assumption is that we will be keeping some form of anonymous function definition. If not, then any arguments relating to lambda functions are void.

Whatever symbol or keyword we chose, it is important that the short form of a function definition (lambda) be as close as possible to the normal form. This will make the short form self-explanatory for users who understand the normal form.

For the function def syntax, we should consider alternative forms, depending on how much clarity or compactness we want. Any of these would be acceptable:

func1 = function(x, y):

func1 = func(x, y):

func1 = def(x, y):

func1 = :(x, y):

func1 = : x, y :

func1(x,y): <== current preference
 Short forms:

def(x,y):
:x,y: <== current preference
(x,y)

@x,y:

The short form would be used where we now have lambda x,y: e.g.

L = [(lambda x:2-x), (lambda x:3+x), (lambda x:4*x), (lambda

 x:7/x)]

This will look much better as:

L = [:x:2-x, :x:3+x, :x:4*x, :x:7/x]

It seems like the choice of symbols or keywords here is a matter of personal preference. The only objective criteria I have is that the short form should be as short as possible and reasonably close to the normal form. Verbosity is one of the reasons I don't use lambda.
The @ symbol should be used only if we want to label this as "extension syntax", not something beginners should worry about.

Con2: The unusual keyword 'lambda' makes it easy to search for the documentation. Using a symbol like : will lose that "search-ability".

Discussion:

DMQ: Dedicating one of Python's 29 keywords can hardly be justified by the value of making this seldom-used feature searchable. Much better to make the syntax so close to a normal function that no documentation is needed.
Classes Included in Enclosing Scopes

Pro: Simpler, more uniform scope rules.
Con: Not backward compatible with Python 2. A program with the same variable name at the class and module levels, would now have the class level variable over-ride the module level. This is the same problem that occurred when enclosing functions were added to the scope rules.
With Block, Cloning
Pro: Allows "on-the-fly" programming style with no classes.
Con: Can lead to more undisciplined programming. See comp.lang.python, 5/1/04, Michele Simionato, "Prototypes in Python".

Discussion:

DMQ: I was initially in favor of adding prototype machinery to Python 3. (What was I thinking? :) Then Michele Simionato showed us this could be done easily with the existing machinery in Python (see the newsgroup post above). Now I believe that those who want "true prototypes" as a replacement for classes, must make a more convincing argument. We need to know what is lacking in Ms. Simionato's 'prototype' module.

Issues relevant to teaching OOP
Parallels between Prototypes and Modules

Ninety percent of what students need to know about prototypes is already understood from their study of functions and modules. Even some tricky issues are best explained by comparing to a parallel situation with modules.

1. Functions have the same form, except for instance variables.

2. Re-assigning an instance variable creates a new object in memory. Any reference to an inherited object is over-ridden.

3. Bound functions preserve instance variables, only if those variables are in the namespace dictionary of the instance. Inherited values can change.
Explanation of Instance Variables in Python
""" Some of the variables inside the functions in a class have a self. prefix. This is to distinguish local variables in the function from "instance variables". These instance variables will be found when the function is called, by searching the instance which called the function. The way this works is that calling the function from an instance causes that instance to be passed as the first argument to the function call. So if you call cat1.talk(), that is equivalent to Cat.talk(cat1) If you call cat1.set_vars("Garfield", "Meow"), that is equivalent to Cat.set_vars(cat1, "Garfield", "Meow")
The "current instance" argument is automatically inserted as the first argument, ahead of any other arguments that you may provide in calling a method that is "bound" to an instance. Note: The distinction between instances and classes is important here. If you call a function from a class, that function is not bound to any instance, and you have to supply the instance explicitly in the first argument (Cat.talk(cat1))
The variable name self is just a convention. As long as you put the same name in the first argument as in the body of the definition, it can be self or s or even _ The single underscore is handy if you want to maximally suppress clutter. """
Explanation of Simplified Instance Variables
""" Some of the variables inside the functions in a prototype have a leading dot. This is to distinguish local variables in the function from "instance variables". When a function is called from an instance (cat1.talk()) a special global variable __self__ is automatically assigned to that instance (__self__ = cat1) Then when the function needs an instance variable (.sound) it uses __self__ just as if you had typed it in front of the dot (__self__.sound) The leading dot is just an abbreviation to avoid typing __self__ everywhere. """
For more discussion of this topic see the thread "Explanation of Instance Variables in Python", comp.lang.python, 4/28/04.
Appendix 1: Translating Python Classes to Prototypes

For a major change in Python to be successful, it must be possible to automatically translate existing Python programs into the new constructs. This means that the translation of a statement cannot depend on understanding the "intent" of the programmer.

The most fundamental change from current Python, is the replacement of classes with "prototypes". The most challenging translation will likely be replacing a variety of "method" styles with one simple function style. There are four method styles in Python – bound, unbound, static, and class methods.

1. Bound Methods

Python 2:

class Mammal(Animal):

 def __init__(self, sound = "Duh"):

 self.sound = sound

 def talk(self):

 print "I am a mammal."

 self.make_noise()

 def make_noise(self):

 print "I say ...", self.sound

m = Mammal()

m_talk = m.talk # Save the bound method for later use.

m_talk() # Call it.

Python 3:

proto Mammal(Animal):

 __init__(sound = "Duh"):

 .sound = sound

 talk():

 print "I am a mammal."

 .make_noise()

 make_noise():

 print "I say ...", .sound

m = Mammal()

m_talk = m.talk

m_talk()

2. Unbound Methods

Python 2:
class Cat(Mammal):

 def talk(self): print "I am a cat."

c = Cat()

#
Mammal.talk(c) # Using an unbound method to bypass Cat.talk
Python 3:
proto Cat(Mammal):

 talk(): print "I am a cat."

c = Cat()

#

c.m_talk = Mammal.talk # Give the function a name in c's namespace.

c.m_talk() # Then call it with c as the current instance.

 -- or –-

__self__ = c

Mammal.talk()
3. Static Methods

Python 2:

class Mammal(Animal):

 _numMammals = 0

 def show():

 print " Mammals:", Mammal._numMammals

 show = staticmethod(show)

Python 3:

proto Mammal(Animal):

 _numMammals = 0

 show():

 print " Mammals:", Mammal._numMammals

4. Class Methods

Python 2:

class Mammal(Animal):

 def show(cls, s):

 print " Class:", cls, " Species:", s

 show = classmethod(show)

#

>>> Mammal.show(tiger)

Class: <class '__main__.Mammal'> Species: tiger
Python 3:

proto Mammal(Animal):

 show(s):

 print " Class:", s.__proto__" Species:", s # ???

#

>>> Mammal.show(tiger)

Class: <class '__main__.Mammal'> Species: tiger

PrototypeSyntax.doc
Page 9 of 9
DMQ 5/22/04

