Notes and Suggestions for the MyHDL Manual

This is a work in progress, not finished text.  Think of it as an "initial reaction" to MyHDL from someone who is just learning the package and who has only a one-semester introduction to digital design and only a few months experience with Python.
The suggestions here go beyond the corrections and short additions noted in the manual itself or the more finished pieces in the Q&A document.  Some of this may end up the manual, in the Q&A document, or perhaps in a separate supplement to the manual, intended as introductory material for students.

Where there is a close parallel to the text in the manual, I will sometimes suggest a replacement of that text.  Original text is quoted in italic font or with strikethrough.  Suggested replacement text is in normal font.  External references are in {curly brackets}.  Comments are sometimes indented, like the next paragraph, to set them off from possible final text.
Some of what I've written here may be incorrect, since I am just learning.  I felt it was better to write things down while the learning experience is fresh, rather than wait until I am sure of something, but end up forgetting what it was that bothered me.
General Suggestions

We need {references} in the manual to the specific paths where examples are located.  This is especially true where there are multiple versions of the same file which might be confused {e.g. .../myhdl-0.4.1/cosimulation/icarus/test/bin2gray.py vs .../cosimulation/test/bin2gray.py }
1.2 A small tutorial on generators
...

The use of generators to model concurrency is the first key concept in MyHDL. The second key concept is a related one: in MyHDL, the yielded values are used to specify the conditions on which the generator should wait before resuming. In other words, yield statements work as generalized sensitivity lists.  If you say

yield signalX, posedge(clockA), delay(100)

these three objects returned by the yield statement are used by the Simulation object to schedule the next call.  You can read this statement as "wait for any change in signalX, a positive edge on signal clockA, or a delay of 100 units, whichever occurs first".

I am using the term 'object' rather than 'clause' because to me, 'clause' means a group of words with syntax more like a complete sentence.  I suggest we make this change throughout the manual.
Note that the terms generator and yield  have meanings in Python that may surprise circuit designers.  See {section 7.9} for a summary of Python terminology and idioms compared to other HDLs. 
2. Introduction to MyHDL
The major difference between a hardware description language ( HDL ) and a common computer language is the need to model concurrency.  In a real circuit, things happen concurrently.  In a computer program, things happen one at a time, with the results of each statement having effects on the next statement that may be unwanted if the statements are supposed to run "simultaneously" in simulation time.
In Verilog, some statements are always concurrent, and some are grouped with special syntax (always @ ) to make them concurrent.  Within an always block, special operators ( <= ) are needed to make sequential statements work concurrently.  There is much confusion among students over when to use the different types of variables ( net, reg, wire, integer, etc.).  The rules seem to relate to the internal workings of Verilog, not the hardware world the designer is familiar with.
MyHDL models concurrency using standard Python syntax.  This has the advantage that if you understand Python, the operation of the simulator is transparent.  Concurrent blocks are written as standard Python generators.  Although generators were added to Python for other reasons, they are ideal for modeling chunks of hardware.  Using the full-featured syntax of a Python function, they are much more versatile than Verilog always blocks {see example in section 7.9}.  They are also less tricky.  Changing a signal is done by setting its next attribute, which is clearly distinct from its current value.

In MyHDL, orchestration of the calls to large numbers of concurrent generators is done by a scheduler, using "wait lists" built from the delays or dependencies returned by each generator when it yields.  Generators interact via signals.  Changes are held pending until all generators scheduled to run at the current time point are finished.  Then all signals are simultaneously updated to their next values, and the simulation moves to the next time point.
You might say that the idioms of Python are every bit as quirky as Verilog or any other HDL, but you would get a strong counter argument from the Python community, which takes great pride in the common-sense simplicity of this language.  Even if it were true, however, the advantage is still to Python, if you assume that you will be using Python for things other than hardware description.  The fewer languages we have to learn, the more time we can spend on real productivity.  Personally, I find Python to be much more straightforward than other languages in every application I have looked at, including now hardware description.
2.2 Concurrent Generators and Signals
2nd paragraph:

With concurrency comes the problem of deterministic communication. Hardware languages use special objects to support deterministic communication between concurrent code. MyHDL has a Signal object which is roughly modeled after VHDL signals. 

I suggest we eliminate this uninformative paragraph and just use the fuller discussion in section 2 above.
2.4 Bit oriented operations

Hardware design involves dealing with bits and bit-oriented operations. The standard Python type int has most of the desired features, but lacks support for indexing and slicing. For this reason, MyHDL provides the intbv class. The name was chosen to suggest an integer with bit vector flavor.  Think of it as a mutable integer whose bits can be accessed and modified.
2.5 Bus-functional procedures
The first two paragraphs may be baffling to students who are not familiar with "abstract transactions on a physical interface" and other gobbledygook.  In fact, we may want to re-title this section, or at least de-emphasize the odd and uninformative terminology "bus-functional procedure".  How about this for an intro to this section?:
We've seen how to make generators wait for a particular time, a rising or falling edge on a particular signal, or any change in a particular signal, but what if we want to synchronize one generator with another and none of the above methods is applicable?  An example would be a routine to send a stream of data bytes to a circuit block that requires those bytes at irregular intervals.  The timing of the data is not fixed, and whatever synchronization will be used in the full system is not yet implemented; we are just testing a piece of it.  There is no signal we can look at to trigger sending the next byte of data.  It should be sent when the block that needs it is done processing the previous byte.
The answer is a so-called "bus functional procedure".  Don't let the name put you off.  This is just an ordinary Python generator.  Putting a generator in the return list of a yield statement makes it a bus-functional procedure.  When a generator A is returned by a yield statement in generator B, generator A is added to generator B's wait list, so when generator A yields, generator B resumes.  The synchronization does not depend on any specific signals.
As an example, ...

... 

def stimulus():
...



yield rs232_tx(tx, txData)

We use the bus-functional procedure call as a clause in a yield statement. This introduces a fourth form of the yield statement: using a generator as a clause. Although this is a more dynamic usage than in the previous cases, the meaning is actually very similar: at that point, the original generator should wait for the completion of a generator. In this case, the original generator resumes when the rs232_tx(tx, txData) generator returns. 

We put the rs232_tx generator itself in the yield statement ( a generator to be returned by a generator ).  This is now the fourth kind of object we have used in the return list of a yield statement.  The scheduling magic is a little more complex, but the meaning to the user is very similar: at this point the yielding generator should wait for the completion of the yielded generator.  The stimulus generator resumes after the rs232_tx generator yields.
...

Simple yield statements return a single object.  However, they can have multiple clauses return multiple objects as well. In that case, the generator resumes as soon as the wait condition specified by any one of the clauses objects is satisfied. This corresponds to the functionality of sensitivity lists in Verilog and VHDL
Change clause to object in the remainder of this section.
2.7 Example Designs
The best way to learn MyHDL ( and Python ) is through examples.  In this section we present some complete designs in MyHDL.  In the first two examples, we will show not just the completed design of an N-bit Ripple-Carry Adder, but how this design evolved from a student's first attempt.  Seeing some common mistakes in the context of a real design should help you avoid these mistakes in your own work.  We will also show how the Python interpreter really helps in getting familiar with the objects in a new package.  Of course, there is no substitute for doing your own work.  You can't gain proficiency by just being a spectator.  You need to create and debug your own designs.

2.7.1 N-bit Ripple-Carry Adder

# AdderN1.py    N-bit Ripple-Carry Adder

# Student's first attempt at modeling a circuit using MyHDL.

from myhdl import Simulation, Signal, delay, intbv, now

NS = 16            # Number of Stages

Cin = Signal(0)   # Carry in

X =   Signal(intbv(0))  # Input X bits

Y =   Signal(intbv(0))  # Input Y bits

S =   Signal(intbv(0))  # Output sum bits

Cout = Signal(0)  # Carry out

def addern( Cin, X, Y, S, Cout ):

    C = Signal(intbv(0))  # Internal carry bits

    while True:

        yield Cin, X, Y

        C[0] = Cin

        for k in range(NS):

            S[k] = C[k] ^ X[k] ^ Y[k]

            C[k+1] = (X[k] & Y[k]) | (X[k] & C[k]) | (Y[k] & C[k])

        Cout = C[NS]

def test( Cin, X, Y, S, Cout ):

    print "      Cin     X     Y     S   Cout"

    X = Signal(intbv(0xFE))

    while True:

        yield delay(100)

        Y = Y + 1

        print "%3s  %4X  %4X  %4X  %4X  %4X" % (now(),Cin,X,Y,S,Cout)

Simulation( addern(Cin,X,Y,S,Cout), test(Cin,X,Y,S,Cout) ).run(500)
Running this program produces the following output:
>>> 

      Cin     X     Y     S   Cout

100     0    FE     1     0     0

200     0    FE     2     0     0

300     0    FE     3     0     0

400     0    FE     4     0     0

500     0    FE     5     0     0

_SuspendSimulation: Simulated 500 timesteps

>>>

It appears that the sum S is not being updated.  The error is subtle, and here is where Python's interactive ability really shines.  You can run the debugger and step through this code, or simply insert print statements at selected locations.  I find that print statements are quicker in almost all situations.  Try adding the following statement right after the line S[k] =
            print C,X,Y,S   ###
I always add a ### flag to any code I don't want accidentally left in place.  Assuming you are using the IDLE environment included with Python,  Save ( CTRL+S ) and Run Module ( F5 ).  The output is the same ( no diagnostic print !! ).  Apparently addern is hung before it gets to the line in question.  Moving the print statement up a few lines at a time shows that addern is hung at the yield statement.  Apparently Y is never changing, even though it looks OK in the printout.  

Aha!! The light comes on.  This is too embarrassing to admit.  :>)  The Y that is getting changed is local to test, not the global signal Y that we thought we were changing.  This is an error in our Python, which we should not have made if we paid attention to our earlier discussion on argument passing and local variables { Nutshell, p.63 }.  You can refer to a variable outside the local scope, but you can't assign to it.  However, we can refer to an external variable, and assign to one of its attributes.  Try changing the line to:
        Y.val = Y + 1
Oops.  That gives AttributeError: can't set attribute
At this point, we really should study the _Signal.py module, and find out what operations we can and can't do with signal objects.  Let's put that on our "to-do" list, and for now just use the operations for which we have already seen examples.

        Y.next = Y + 1
This gets us past the problem in the test routine, and slams us right into the next error C[0] = Cin in the addern routine.  At the bottom of a long, bloody traceback ( I love Python's choice of colors :>) the bottom line is: TypeError: Signal object doesn't support item/slice assignment  Ah well, so much for being adventurous.  Let's stick to what we have seen already.  C.next is the thing which we can probably use if we need to change individual bits.
        C.next[0] = Cin
And while we are at it, let's add the next attribute to signals on the next four lines:

        for k in range(NS):

            S.next[k] = C[k] ^ X[k] ^ Y[k]

            C.next[k+1] = (X[k] & Y[k]) | (X[k] & C[k]) | (Y[k] & C[k])

        Cout.next = C.next[NS]
We don't need to change item references, just assignments.  I'm a little worried about C.next in the last line, but it's easier to try it than think about it.  Now our output looks like:
>>> 

      Cin     X     Y     S   Cout

100     0    FE     0     0     0

200     0    FE     1     1     0

300     0    FE     2     2     0

400     0    FE     3     3     0

500     0    FE     4     4     0

_SuspendSimulation: Simulated 500 timesteps
Well, at least the sum S is changing, but it looks like it thinks X is zero!  Aha!!  One more place we've got to add the next attribute.  In the test routine:
    X.next = Signal(intbv(0xFE))
Now our output looks like:
>>> 

      Cin     X     Y     S   Cout

100     0    FE     0    FE     0

200     0    FE     1    FF     0

300     0    FE     2    FC     0

400     0    FE     3    F9     0

500     0    FE     4    F6     0

_SuspendSimulation: Simulated 500 timesteps
Oww!!  The torture never stops.  Looks like the carry circuitry is FUBAR :>)  
Here is where the Python interpreter really shines as a debugging tool.  Let's try some of the carry-bit updates "manually" and see what we get.  Without restarting the above session, type in the following commands:
>>> Cin, X, Y

(Signal(0), Signal(intbv(254)), Signal(intbv(5)))

Looks like just what we expect.  Now change the inputs to the for k loop, so we can generate a carry in the first bit position:

>>> X = Signal(intbv(0xFF))

>>> Y = Signal(intbv(1))

>>> C = Signal(intbv(0))

>>> C.next[0] = Cin

>>> X,Y,C

(Signal(intbv(255)), Signal(intbv(1)), Signal(intbv(0)))

Now "single step" the loop.  Use cut-and-paste from the source-file window to avoid typing long lines in the interpreter window.

>>> k = 0

>>> C.next[k+1] = (X[k] & Y[k]) | (X[k] & C[k]) | (Y[k] & C[k])

>>> C.next[1]

intbv(1L)

>>> C[1]

intbv(0)

>>>

Now the cause of the problem is clear.  We are changing the next attribute of the C signal (as we must), but the current value is not being updated.  Updates of signals are done by the scheduler, and are not under out direct control.  If we are going to treat C as a signal, we cannot have "unreal" behavior like instant propagation through the entire carry chain.
Let's change C from a signal to a simple list of integers, and put the indexing of C back to its original form:
def addern( Cin, X, Y, S, Cout ):

    C = [0 for k in range(NS+1)]  # Internal carry bits

    while True:

        yield Cin, X, Y

        C[0] = Cin

        for k in range(NS):

            S.next[k] = C[k] ^ X[k] ^ Y[k]

            C[k+1] = (X[k] & Y[k]) | (X[k] & C[k]) | (Y[k] & C[k])

        Cout.next = C[NS]

Now the output looks like:

>>> 

      Cin     X     Y     S   Cout

100     0    FE     0    FE     0

200     0    FE     1    FF     0

300     0    FE     2   100     0

400     0    FE     3   101     0

500     0    FE     4   102     0

_SuspendSimulation: Simulated 500 timesteps

Success at last !!  This has been a rather long diversion, including a blind alley that we had to back out of, but when you are first learning a package like MyHDL, it helps to see some typical blunders and a real debug session.  Many of the errors above would not be made by a student more familiar with Python, but some will occur just because we are unfamiliar with the objects in MyHDL.  For those errors, experimentation with the Python interpreter in a live session is a real timesaver.
It is not clear, for example, that we can add an integer to a signal, and assign the result to the next attribute of another signal.  Careful study of the _Signal.py module will show that the + operator has been redefined by writing new code for the __add__ method, but it is easier ( and more reliable ) to just test a statement like Y.next = Y + 1 by typing it into a live session.
Before moving on, we need to address some problems that are not errors, but issues of style.  Some style issues are important, especially in larger projects, where clarity is critical.  Others are just personal preference.  You can chose one or another style, but be consistent, so others can read your code more easily.  Imitating experienced programmers is usually a good strategy.

One important issue is having a clear separation between test code and the code that is used in the final design.  In the version below, we have moved the test signals down into the testbench, leaving NS as the only global variable.  NS could be moved into addern, but we decided to leave it global, assuming there will be other generators besides addern sharing the same parameter.
The testbench has also been reorganized, adding an instance of addern as the device-under-test ( dut ) and splitting the stimulus and monitor functions into separate generators.  Separating the different "instruments" on the testbench is advantageous when the complexity of any one of them gets high.
# AdderN3.py    N-bit Ripple-Carry Adder

#   improving on the style of AdderN2.py

from myhdl import Simulation, Signal, delay, intbv, now

NS = 16            # Number of Stages

def addern( Cin, X, Y, S, Cout ):

    C = [0 for k in range(NS+1)]  # Internal carry bits

    while True:

        yield Cin, X, Y

        C[0] = Cin

        for k in range(NS):

            S.next[k] = C[k] ^ X[k] ^ Y[k]

            C[k+1] = (X[k] & Y[k]) | (X[k] & C[k]) | (Y[k] & C[k])

        Cout.next = C[NS]

def test():

    Cin = Signal(0)   # Carry in

    X =   Signal(intbv(0))  # Input X bits

    Y =   Signal(intbv(0))  # Input Y bits

    S =   Signal(intbv(0))  # Output sum bits

    Cout = Signal(0)  # Carry out

    dut = addern( Cin, X, Y, S, Cout )

    def stimulus():

        Xvals = [0xFE]

        Yvals = [0,1,2,3,4]

        for x in Xvals:

            for y in Yvals:

                X.next = x

                Y.next = y

                yield delay(100)

    def monitor():

        print "      Cin     X     Y     S   Cout"

        while True:

            yield X,Y

            yield delay(1)  # just after each change

            print "%3s  %4X  %4X  %4X  %4X  %4X" % (now(),Cin,X,Y,S,Cout)

    return( dut, stimulus(), monitor() )

Simulation(test()).run(500) 
2.7.2 N-bit Ripple-Carry Adder with Gate Delays

Now, let's model the real delays in the adder.  These delays depend on the detailed structure of the gate-level design, but for this simulation, we can summarize by saying the sum bit at each stage is valid 2nsec after the last change in any input to that stage, and the carry bit is valid 1nsec later ( 3nsec total from the inputs to the stage).  We'll also change the carry bits back to a real signal, since we are now modeling their delay.
To watch the carry propagate, while not getting an overwhelming amount of data, requires a sophisticated monitor.  Now we can see the advantage of separating monitor code from the other "instruments" on the testbench, and the advantage of Python in setting up a monitor perfectly fitted to this problem.  Our monitor shows only the final settled outputs for most input values, but triggers a high-resolution display whenever an input pattern is detected that will result in a carry through the entire adder.  In the simulation below, this high-resolution scan starts at 300nsec, and finishes at 350nsec.  The low-resolution display then resumes.

The monitor is written with simple Python statements.  It solves just this one problem, but solves it very well.  This is a good illustration of the design philosophy in MyHDL.  There is no attempt to provide a general-purpose monitor function with trigger setups and all the other complexities of a modern lab instrument.  Learning to use that function would be as difficult as learning the Python below.  Then you could solve only the problems the tool designer anticipated.  Learn Python, and you can write a simple routine for any problem you may encounter.
# AdderN4.py    N-bit Ripple-Carry Adder

#   with propagation delays in the carry chain and a monitor triggered on a

#   special event to show the details of a long carry.

from myhdl import Simulation, Signal, delay, intbv, now, bin

NS = 16            # Number of Stages

def addern( Cin, X, Y, S, Cout ):

    C = Signal(intbv(0))  # Internal carry bits

    while True:

        yield Cin, X, Y

        C.next[0] = Cin

        for k in range(NS):

            yield delay(2)

            S.next[k] = C[k] ^ X[k] ^ Y[k]

            yield delay(1)

            C.next[k+1] = (X[k] & Y[k]) | (X[k] & C[k]) | (Y[k] & C[k])

        yield delay(2)  # Cout buffer

        Cout.next = C[NS]

def test():

    Cin = Signal(0)         # Carry in

    X =   Signal(intbv(0))  # Input X bits

    Y =   Signal(intbv(0))  # Input Y bits

    S =   Signal(intbv(0))  # Output sum bits

    Cout = Signal(0)        # Carry out

    maxint = 2**NS - 1      # Maximum integer value

    dut = addern( Cin, X, Y, S, Cout )

    def stimulus():

        Xvals = [maxint-2]

        Yvals = [0,1,2,3,4,5,6]

        for x in Xvals:

            for y in Yvals:

                X.next = x

                Y.next = y

                yield delay(100)

    def monitor():

        print "      Cin     X     Y     S   Cout"

        endpattern = bin(maxint+1)

        while True:

            yield X,Y

            if (X+Y+Cin) & maxint == 0:  # Trigger on an interesting carry

                while True:          # and show the details, one ripple

                  yield Cout, S      # at a time.

                  print "%3s  %4X  %4X  %4X  %04X  %4X" % (now(),Cin,X,Y,S,Cout)

                  if (bin(Cout) + bin(S,NS)) == endpattern: break

            else:                   # Print just the final result

                yield delay(50)     # after all changes have settled.

                print "%3s  %4X  %4X  %4X  %04X  %4X" % (now(),Cin,X,Y,S,Cout)
    return( dut, stimulus(), monitor() )

Simulation(test()).run(700)
>>> 

      Cin     X     Y     S   Cout

 50     0  FFFD     0  FFFD     0

150     0  FFFD     1  FFFE     0

250     0  FFFD     2  FFFF     0

302     0  FFFD     3  FFFE     0

305     0  FFFD     3  FFFC     0

308     0  FFFD     3  FFF8     0

311     0  FFFD     3  FFF0     0

314     0  FFFD     3  FFE0     0

317     0  FFFD     3  FFC0     0

320     0  FFFD     3  FF80     0

323     0  FFFD     3  FF00     0

326     0  FFFD     3  FE00     0

329     0  FFFD     3  FC00     0

332     0  FFFD     3  F800     0

335     0  FFFD     3  F000     0

338     0  FFFD     3  E000     0

341     0  FFFD     3  C000     0

344     0  FFFD     3  8000     0

347     0  FFFD     3  0000     0

350     0  FFFD     3  0000     1

450     0  FFFD     4  0001     1

550     0  FFFD     5  0002     1

650     0  FFFD     6  0003     1

StopSimulation: No more events

>>>

4.4 The doctest Module

The doctest module is an alterntive way to set up unit tests.  While not as flexible as the unittest module, doctest is easier to work with.  Tests are created by simply copying lines from an interactive session into the docstrings of modules, classes, and functions.
Here is an example module using doctests:
# bin2gray.py   Gray encoder modified to add doctests

'''  
Here is a typical test run:
>>> Simulation(testBench(width=3)).run()

B: 000| G: 000

B: 001| G: 001

B: 010| G: 011

B: 011| G: 010

B: 100| G: 110

B: 101| G: 111

B: 110| G: 101

B: 111| G: 100

StopSimulation: No more events

0
>>>

'''

from myhdl import Signal, delay, Simulation, intbv, bin, traceSignals

def bin2gray(B, G, width):

... same as before ...
def testBench(width):

... same as before ...
if __name__ == '__main__':

    import doctest

    doctest.testmod(verbose=True)

This is the bin2gray module from the manual examples with two modifications.  1) We added a docstring at the top of the module, with a block copied directly from an interactive session.  2) The __main__ code at the bottom was modified to run doctest.testmod
The doctest.testmod function searches the entire current module for docstrings containing blocks from an interactive session.  It then runs the commands from those blocks and checks to see if the actual output matches the docstring.  If verbose=True in the call to testmod, you get a nice summary printout of all the tests that were run.
The main purpose of doctest is to verify that your docstrings are correct.  It serves our purpose as a unit test framework, because a well-written docstring is often a good unit test.  Not all unit tests make good docstrings, however.  Tests with huge output, or with details that are not worthy of a docstring should not be done this way.  Some of these tests can be tucked away in a special __test__ dictionary, also scanned by testmod.  Others may need the more complete features of unittest. If you can do the test easily in an interactive session, you can do it using doctest.
There is no reason you can't use both doctest and unittest on the same module.  doctest provides a quick check as you are making modifications during the development phase.  The unittests provide a more comprehensive set of tests to run less frequently.  See the example modules for this section {myhdl-0.4.1/example/manual/test_gray.py}.
There is an excellent discussion of doctest and unittest in chapter 17 of Python in a Nutshell.  There you will see more examples and a discussion of when to use each.
5 Cosimulation with Verilog

5.2 The HDL Side
These notes assume you have downloaded verilog-0.8.tar.gz from http://icarus.com/eda/verilog/ and installed it under Cygwin.  We are running all Unix programs under Windows, using Cygwin.  Compiling Icarus is a pain, but it seems to work if you follow the instructions carefully.
Setting up the links from MyHDL to Icarus  ( This doesn't work.  Skip ahead to 1/13/05.)
Compile the myhdl.vpi module from C source code.  See instructions in C:/downloads/Python/MyHDL/cosimulation/icarus/README.txt
1) Copy the directory c:/downloads/Python/myhdl-0.4.1/cosimulation/icarus/ to c:/cygwin/icarus/

2) From a Cygwin bash shell, cd to /icarus and run make.
Error: c:\cygwin\usr\ does not appear to be the valid root directory
       of MinGW.  Use the –mingw option of iverilog-vpi.exe to point
       to the MinGW root directory.  

Update all Cygwin packages, including MinGW.
Same problem.
3)  Makefile has a command:

myhdl.vpi: myhdl.c myhdl_table.c 


iverilog-vpi myhdl.c myhdl_table.c

Try different directories by editing the icarus makefile.

      iverilog-vpi –mingw=\\usr\\include\\mingw myhdl.c myhdl_table.c

                   -mingw=\\usr\\i686-pc-mingw32    ...
                   -mingw=c:\\usr\\include\\mingw   ...
                   -mingw=\\cygdrive\\c\\usr\\include\\mingw  ...

Same problem.
Icarus was installed under Windows.  Re-install it under Cygwin.

1/13/05  copy downloads/Python/myhdl-0.4.1/cosimulation/
              to cygwin/home/Dave/MyHDL/cosimulation/
In a Cygwin shell:
$ cd /home/Dave/MyHDL/cosimulation/icarus
$ make

This creates the file myhdl.vpi
$ cd test

$ python test_all.py

All 9 tests run OK.
1/15/05  Cosimulation with Icarus
Copy files to ~/MyHDL/cosimulation/5_cosim/

bin2gray.v  dut_bin2gray.v  myhdl.vpi  bin2gray.py  test_bin2gray.py
test_bin2gray.py now runs all three tests OK.
To test the Verilog modules, change the following lines in test_bin2gray.py:
##    from bin2gray import bin2gray

import os

from myhdl import Cosimulation

cmd = "iverilog -o bin2gray -Dwidth=%s bin2gray.v dut_bin2gray.v"

def bin2gray(B, G, width):

    os.system(cmd % width)

    return Cosimulation("vvp -m ./myhdl.vpi bin2gray", B=B, G=G)

5.2  Example with Icarus Verilog
Here is a suggested replacement for sections 5.2 and 5.3.  I found the existing sections hard to follow, with too many details to keep in mind before getting to an example I could run.  Here we put the example first, and "encapsulate" the complexity for later explanation.
To introduce co-simulation, we will continue to use the Gray encoder example from the previous chapters { sections 2.4 and 4.3 }.  Let's say we want to synthesize this encoder. We will need to translate it from MyHDL to Verilog.  This is done in the examples at { .../myhdl-0.4.1/cosimulation/test/verilog/bin2gray.v }
We don't want to translate the unit test environment { .../test/test_bin2gray.py }  This would be a big effort, and we could never match the elegance of Python in setting up these tests.  Instead, we modify the test program so that it runs the same tests on the Verilog module.  In test_bin2gray.py, we substitute in place of the line:

from bin2gray import bin2gray

the following lines, which are standard Python, but will require explanation of the parts specific to Icarus Verilog:
import os

from myhdl import Cosimulation

cmd = "iverilog -o bin2gray -Dwidth=%s bin2gray.v dut_bin2gray.v"

def bin2gray(B, G, width):

    os.system(cmd % width)

    return Cosimulation("vvp -m ./myhdl.vpi bin2gray", B=B, G=G)

Then we can run the test program ( from a Cygwin shell )
 and get the output:
$ python test_bin2gray.py –v

Check that only one bit changes in successive codewords ... ok

Check that all codewords occur exactly once ... ok

Check that the code is an original Gray code ... ok

----------------------------------------------------------------------

Ran 3 tests in 5.045s

which is identical to the output from the pure Python simulation, except for the time, which was 1.527s.
Here are the details.  The os.system(cmd % width) line above runs the compiler ( in this case Icarus Verilog ) to produce an executable bin2gray from two Verilog modules bin2gray.v and dut_bin2gray.v  Details of this command are found in the Icarus documentation { man iverilog }.
The parameter width is originally a variable in the test module.  This parameter is passed to the iverlog compiler with the –D option, and it then becomes a pre-processor constant ( or in Icarus terminology, a macro) {$ man iverilog }.  Any modules compiled in this step can use this constant just as if it were typed into the source code at each place where `width appears.
The bin2gray function returns a Cosimulation object with exactly the same "generator" interface as the original Python function in bin2gray.py, but instead, this generator links to the Verilog module bin2gray.v, and runs it via the Program Language Interface ( PLI )  in myhdl.vpi.
The first argument to the Cosimulation function is the command to run the compiled Verilog module bin2gray. {$ man vvp } The remaining keyword arguments are the signals to be passed, the keyword names being the signal names on the Verilog side, and the values being the names on the Python side.  Generally, it is best to keep the same name for the same signal in all modules.
dut_bin2gray.v is a special "wrapper" module that we must add to connect the regs and wires used as ports in bin2gray.v, and the corresponding signals in test_bin2gray.py.  For your own project, just follow this pattern, using your own pre-processor constants, and as many regs and wires as you need.  The task calls $from_myhdl and $to_myhdl can accept any number of arguments.

dut_bin2gray;

   reg [`width-1:0] B;

   wire [`width-1:0] G;

   initial begin

      $from_myhdl(B);  # to the Verilog modules
      $to_myhdl(G);    # from the Verilog modules
   end

   bin2gray dut (.B(B), .G(G));

   defparam dut.width = `width;

endmodule
module bin2gray(B, G);

   parameter width = 8;

   input [width-1:0]  B;

   output [width-1:0] G;

   reg [width-1:0] G;

   integer i;

   wire [width:0] extB;

   assign extB = {1'b0, B}; // zero-extend input

   always @(extB) begin

      for (i=0; i < width; i=i+1)

        G[i] <= extB[i+1] ^ extB[i];

   end

endmodule

The task calls $from_myhdl and $to_myhdl are defined in myhdl.vpi, a special interface module compiled from myhdl.c   There are lots of details here { see myhdl-0.4.1/cosimulation/icarus/README.txt }, but you only need to do it once, then copy the resulting file to your current working directory.  Similar interface modules can be written in C for other Verilog compilers.
6 Conversion to Verilog

6.5 Methodology notes

6.5.3.1 Name assignment in Python

Consider the following name assignments: 

a = 4

a = ``a string''

a = False

In many languages, the meaning would be that an existing variable a gets a number of different values. In Python, such a concept of a variable doesn't exist. Instead, assignment merely creates a new binding of a name to a certain object, that replaces any previous binding. So in the example, the name a is bound a number of different objects in sequence.
I think we could clarify the above, without too many more words, as follows:
Consider the following assignments:

a = 1

a = "one"

a = True

In many languages this would be impossible, because the variable a must have a specific type, typically declared in a header file, so the variable has the same type in all modules.  In Python, variables are just names, bound to objects that have types, like int, str, or bool.  Assignment merely creates a new binding of a name to a certain object, which replaces any previous binding of that name.  So in this example, the name a is bound to a number of different objects in sequence.  Type is associated with the object, not the variable name.
6.6.1 A small design ...
Conversion fails on first example.
>>> inc_inst = toVerilog(Inc, count, enable, clock, reset, n=n)

Traceback (most recent call last):

  File "<pyshell#45>", line 1, in -toplevel-

    inc_inst = toVerilog(Inc, count, enable, clock, reset, n=n)

  File "C:\Python24\Lib\site-packages\myhdl\_toVerilog\_convert.py", line 73, in toVerilog

    name = _findInstanceName(outer)

  File "C:\Python24\Lib\site-packages\myhdl\_extractHierarchy.py", line 83, in _findInstanceName

    tree = compiler.parseFile(fn)

  File "C:\Python24\lib\compiler\transformer.py", line 41, in parseFile

    f = open(path, "U")

IOError: [Errno 2] No such file or directory: '<pyshell#45>'

>>>

6.6.2 Converting a generator directly

Tests done with Alterra MaxPlus II design environment.

Converted file bin2gray.v has illegal syntax.

always @(B) begin: _MYHDL1_BLOCK

    integer i = 0;

    reg [9-1:0] Bext = 0;

    Bext[9-1:0] = B;

    for (i=0; i<8; i=i+1) begin

        G[i] <= (Bext[(i + 1)] ^ Bext[i]);

    end
Deleting " = 0" in two places eliminates the error.

    integer i;

    reg [9-1:0] Bext;

Note:  This may be a form that is accepted by a non-standard compiler, but it is not in Thomas & Moorby 4th edition, which is based on the IEEE Standard 1364-1995: Verilog ... Language Reference Manual.  Also, the example in the MyHDL manual is correct.  Just the output of the converter is wrong.
Coversion of tb_bin2gray_inst.v has compile errors.
Info:  Unsupported Verilog HDL feature error: initial statement

Error:  Project has no output pins in the top-level design file.
7.9  Python idioms and terminology compared to other HDLs
Every language has idioms and terminology that may seem odd to someone familiar with another language.  The "cognitive dissonance" a user experiences with the new syntax should disappear quickly if the language is well designed, and has a minimum of idioms, and a clear rationale for each.  If you find yourself repeatedly making the same mistake with some syntax that seems odd, this section may help.
while True

Students not familiar with Python might get the impression that Python is really awkward compared to Verilog, for example, where you just say always when you want a loop to run "forever".  The designers of Python could have added a "forever" keyword, but the desire was to keep the language simple and universal, with a minimum of special words and constructs.  while True loops are a simple specialization of the more general while <expression> loop.  They are useful in many more applications than hardware modeling, and the "dissonance" goes away after your first use.

It is interesting to note that a Verilog "always" block is actually less self-explanatory than a Python while True loop.  An "always" block doesn't really run always, just when the specified conditions are met.  If you really want a signal to always follow certain inputs ( as in combinational logic ) you need a different construct.  The attempt to make things simple by relying on the plain English meaning of a word, fails because that meaning is ambiguous.  This is a common problem with many "domain-specific" languages.

The Python while True block avoids domain-specific terminology, and is significantly more versatile than a Verilog always block.  It can wait for different conditions at different points in the loop:
???  Not sure how this would look in Verilog. ???
while True:


yield triggerX


<set some initial conditions>


yield posedge(clockY)


<run some code>


yield posedge(clockY)


<run some other code>


yield posedge(clockY)


<run some final code>

yield

In our domain ( hardware description ) the Python keyword yield might be another source of cognitive dissonance.  It could read more easily as "wait for".  Again, a little understanding of the generality of Python will help overcome any initial dissonance for students who might be familiar with other HDLs.  Although Python generators serve our application very well, in their more common applications, yield is more appropriately read as "return this value (and also wait here for the next call)".

generator

The term generator refers to its most common role in Python programs (generating a stream of return values) not its role in MyHDL (modeling a circuit).  A generator can model a receiver, or any other circuit, and not actually "generate" any signals in the hardware.
returning instances

In a hierarchical design, all instances of lower-level sub-circuits must be explicitly returned all the way up to the top level.  This may seem a little odd to a hardware designer, but it is consistent with Python's design principle favoring explicit use of existing syntax, rather than introducing new implicit syntax just to save a few words.  The inconvenience of having to list all instances in a return statement can be avoided by using MyHDL's instances() function.
def fulladd(cin,x,y,s,cout):

    ...
    gen1 = xor (z1,   x,   y)

    gen2 = nand(z2,   x,   y)

    gen3 = nand(z3,   cin, z1)

    gen4 = xor (s,    cin, z1)

    gen5 = nand(cout, z3,  z2)

    ...

    return instances()

def testbench():

    ...
    dut  = fulladd(cin,x,y,s,cout)

    ...
    return dut, ...
Simulation(testbench()).run(100)

>>> testbench()

(([<generator object at 0x011AFC38>, <generator object at 0x011AFC10>, <generator object at 0x011AFBE8>, <generator object at 0x011AFB98>, <generator object at 0x011AFBC0>], <generator object at 0x011AFCB0>), <generator object at 0x011AFC60>)

>>>

As this example shows, the net result of returning all instances at every level is a complete, self –contained, and properly nested, collection of all generators in the circuit.  When this collection is passed to the Simulation controller, no further work is necessary to ferret out the structure of the circuit.
If you forget to include an instance in a return statement, it is just as if that instance is missing from the circuit.  This can lead to subtle errors, so be careful.
{ from JD email 1/18/05 }

===================
while True

----------

The 'while True' in MyHDL is explicitly needed, while in Verilog (and VHDL)

one typically uses an implicit endless loop ('always'). The advantage of the

explicit style is that it makes it easier to realize that you can use

it in an "embedded" way, as you did in your code. Explicit is better

than implicit!

break

-----

In Python, we use 'break' to break out of a loop, as you did. This is a

common computer language keyword and concept. But in Verilog,

one has to emulate this using an ugly and difficult-to-understand

'disable' statement.

bit widths

----------

In MyHDL, you can use intbv's with an "indefinite" bit width, which

is easy for code development, as you did.  In Verilog, you

would always have to specify a specific bit width when declaring a

reg or a wire.

Signals and delays

------------------

Signals have a feature which is only briefly mentioned in the MyHDL

manual (in the reference chapter), but that may be useful. You

can construct Signals with a 'delay' attribute. This would allow

you to remove some of the 'yield delay()' statements in your code

which is just intended to emulate delayed signal behavior, but has

nothing to do with the "behavior" as such. I believe

it's a feature that makes a lot of sense, and it's something that

no other HDL that I know of has.
===================
Examples comparing MyHDL to Verilog

Statement Blocks - initial and always

Verilog:

    always @( X or Y or Cin )

MyHDL:

    while True:

        yield X, Y, Cin

This doesn't work if X and Y are lists of signals.  Use an intbv for the value of a multibit signal.
Blocking and Non-Blocking Assignments

Nets and Regs

Tentative Suggestions (need more thought)
Could rename Simulation to Scheduler to more accurately reflect what it does.

Could define more functions to minimize user exposure to Python idioms.

Questions
6.4.3-2 Base object of a signal ?
� Note on using Cygwin:  The IDLE environment does not start on my machine using the Python24 installation under Cygwin.  If I try to use the IDLE environment from the Python24 installed under Windows, I can't run the test_bin2gray module above.  There is some problem with the child PID and os.fork.  The tests work correctly if you run the command above from a Cygwin bash shell.








MyHDL/Notes.doc
Page 7 of 19
DMQ 1/18/05


