Proposed Course
ECE ____ Modern IC Design Practice
Spring Semester 2005

Credits: ____

Prerequisites: ECE 274, ECE 351
Description: This course is intended for students who are thinking of IC design as a career, and would like some exposure to the real circuits and tools commonly used in industry. After working through the tutorials, and learning the basic operation of the tools, students will pick one or two projects proposed by industry experts. These experts will be available to answer questions on use of the tools on the projects they have proposed.
Project Proposals

Here is a sample of some likely projects.
Circuit Design Projects:

· Noise in a Bandgap Voltage Reference
New simulation tools designed for analyzing RF circuits can also be used to analyze switched-capacitor circuits. The goal of this project is to understand the sources of excess low-frequency noise in a precision bandgap reference.

· Phase Errors in a Ring Oscillator
New statistical tools allow fast accurate prediction of the expected variations in the performance of a complex circuit. The goal of this project is to model the phase errors in an eight-phase ring oscillator, and determine a layout strategy that will minimize those errors.

· Frequency Analyzer
Find the best circuit to determine the fundamental frequency of a noisy guitar tone. Input is a digital waveform that matches the zero-crossings of the tone. Output is a pulse with width equal to the best-guess fundamental period. The "best circuit" should be defined objectively (speed, accuracy, power, cost, etc.).

EDA Tools Projects:

· Logic Design Tools in Python

BF.py
Existing tools for logic design use sophisticated algorithms to work efficiently on large design problems. However, they don't provide much insight into how the algorithms work. The purpose of this project is to implement some simple tools in a way that parallels the development in ECE474 - Logic Synthesis Algorithms. Python is the ideal language for this project because of its clarity. Much of the low-level machinery needed for implementing logic design algorithms is built right into the Python interpreter (dictionaries, hash tables, automatic garbage collection, etc.) The interactive interpreter makes it easy for students to debug their programs without the usual compilation delay. See the link above for a start on a program to manipulate boolean functions. To learn Python in two hours, try the tutorial at www.python.org !!

· An Open-Source Platform for Front-End IC Design
cdp_tut01-a1.zip cdp_tut01-a1.tar.gz
The goal of this project is an easily-learned, universal, open-source, circuit design platform that will allow IC designers to use whatever tools they want for design entry, simulation, and display of results. The platform should provide a simple GUI, basic services such as storage of tool setups, and should define a simple, standard interface for each class of tool. Most of the work will be in documenting the design and construction of the platform, using a simple scripting language (Python) and GUI toolkit (Qt) so that others may easily follow the pattern and extend the platform to support new and more varied tools.

· Integration of a Simulator with a Circuit-Design Platform

The goal of this project is to provide an example, using a common tool like SPICE, showing how a circuit simulator can be integrated into the standard platform. Most of the work will be on the interface to the display tool, which involves writing some access routines that make simulation results appear to have a standard structure, regardless of their actual arrangement on disk. This is an example of how a "Standard API" type of interface can allow tool developers to focus on making the best possible tool, while users enjoy the benefits of a standardized interface to that tool.

· Integration of Design-Entry and Waveform-Display tools with a Circuit-Design Platform
The goal of these projects is to provide examples, as above, and to help define the simple, standard interfaces needed for design-entry and waveform-display tools. Most of the work will be in translating simple calls from the platform into the complex commands needed by a particular tool (e.g. probing schematics). By working with real tools, we will discover where our simple interface definitions need to be extended, and where a little more work on the interface routines will keep the definitions simple.

