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Abstract. In this lecture we describe different key distribution schemes for establishing a

shared secret among two or multiple parties. Particularly we present the Diffie-Hellman key

distribution scheme and the Blom’s key predistribution scheme.

1 Key Distribution Problem

The key distribution problem (KDP) is the problem of establishing and maintaining security asso-
ciations (shared secrets) between a network of n users connected via insecure links. The KDP can
be classified into the following two stages.

– Initialization: During the initialization phase, a trusted party also referred to as Trusted Au-

thority (TA) distributes keying information to relevant parties in a secure manner. The keying
material can be either used directly to encrypt data, or it can be used to establish new security
associations.

– Maintenance: During the maintenance phase, the TA, or the network users themselves renew
relevant cryptographic secrets to maintain secrecy of the communications (How is maintenance
different from the initialization phase?)

For the initialization phase, key material can be either preloaded to the network entities before
deployment, or can be issued using a temporary secure channel. Using the secure channel, the TA
assigns long lived keys to network entities, that are usually only used to derive other keys and not to
encrypt data (they are also called key encryption keys). Nodes who wish to securely communicate
use their long lived keys to establish a session key that has a much shorter expiration time.

Question What determines the expiration time of a key? What are the advantages of having a
session key?

Parameters considered when designing a key distribution scheme

– Resistance to node compromise and collusion.
– Communication cost for the TA and users.
– Storage cost for the users.
– Flexibility in establishing different types of keys.

1.1 Adversarial Model

Various types of attacks are considered, including both passive (inferring keying material by eaves-
dropping) and active ones. An adversary can:

– Alter messages while in transit.
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– Inject fake messages into the network.
– Save transmitted messages and replay them at a later time.
– Attempt to impersonate one or more users in the network.

The goal of the adversary may be mutli-fold. To mention a few examples the adversary can:

– Fool two users U, V into accepting an invalid key as valid.
– Fool two users U, V into believing they have successfully established a shared key, while in reality
they have not.

– Partially or fully recover a session, or a long-term key so as to compromise the confidentiality of
the communications.

1.2 Diffie-Hellman Key Predistribution

The Diffie-Hellman key predistribution scheme relies on the difficulty of the Decision Diffie-Hellman
problem we describe below.

The Diffie-Hellman Problems Computational Diffie-Hellman Problem (CDH)–Consider
a mutliplicative group (G, ·), an element α ∈ G of order n, and two elements β, γ ∈< α > (recall that
< α >: {αi, 0 ≤ i ≤ n− 1}). Find δ ∈< a > such that logα δ ≡ logα β logα γ (mod n). Equivalently
given αb and αc find αbc.

Decision Diffie-Hellman Problem (DDH)–Consider a mutliplicative group (G, ·), an element
α ∈ G of order n, and two elements β, γ ∈< α >. Is δ ∈< a > such that logα δ ≡ logα β logα γ

(mod n). Equivalently given αb and αc, αd, determine if d ≡ bc (mod n).

It is easy to see that the DDH problem can be reduced to the CDH. Let an algorithm solve the
CDH problem, i.e., find δ′ such that logα δ′ ≡ logα β logα γ (mod n). Then check to see if δ′ = δ.

Also the CDH problem can be reduced to the DLP as follows. Let an algorithm solve the DLP,
i.e., for some α, β, γ it is easy to find b = logαβ and c = logα γ given only αβ and αγ . Then it is easy
to compute d = bc (mod n) and δ = αd.

Hence, solving the DDH problem implies that one can solve the CDH problem which in turn
implies that one can solve the DLP problem. We now describe the Diffie-Hellman Key Predistribution
Scheme (KPS).

1.3 Diffie-Hellman KPS

1. Consider a mutliplicative group (G, ·), an element α ∈ G of order n, being publicly known.
2. User V computes a shared key KU,V as follows:

KU,V = ααUαV = bαV

U , (1)

where bU denotes the public key of U and αV denotes V ’s private key.
3. User U computes a shared key KU,V as follows:

KU,V = ααUαV = bαU

V , (2)

where bV denotes the public key of V and αU denotes U ’s private key.
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Example: Let G = Z
∗, p = 12987461, q = 1291, primes with p − 1 ≡ 0 (mod q) and α = 3606738

denote the public key parameters. Then Z
∗
p has order of q. Let U select aU = 357 as the private key

and compute the corresponding public key as:

bU = ααU mod p = 3606728357 mod 12987461 = 7317197. (3)

Let also V select αV = 199 as its private key and compute its public key as bV = ααV mod p =
138432. The two users U, V can individually compute a commonly shared key without the need for
the exchange of any information via

KU,V = bαU

V mod p = bαV

U mod p = 11829605. (4)

Security of the Diffie-Hellman KPS Assume that a user W 6= U, V wants to compute KU,V =
ααUαV , by knowing bV , bU but without knowing αV , αU . This is the definition of the CDH problem
which with the right choices of public parameters and group G is considered to be intractable.

1.4 The Blom Key Predistribution Scheme

We first describe the Blom scheme resistant to the compromise of one user and then we extend to
the compromise of k users.

1. Let p be a large prime publicly known and let the TA select an element rU ∈ Zp for each user
U which also made public with rU 6= rV for U 6= V.

2. The TA chooses three random elements a, b, c ∈ Zp and forms the polynomial:

f(x, y) = a+ b(x+ y) + cxy mod p. (5)

The polynomial f is symmetric, i.e., f(x, y) = f(y, x).

3. For each user U, the TA computes gU (x) = f(x, rU ), and sends it to U over a secure channel.
Note that gU is linear in x and hence can be written in the form

gU (x) = aU + bUx, aU = a+ brU mod p, bU = b+ crU mod p. (6)

4. If U, V want to communicate, they individually compute the common key

KU,V = KV,U = f(rU , rV ) = a+ b(rU + rV ) + crUrV mod p. (7)

with user U computing

KU,V = gU (rV ) (8)

and V computing

KU,V = gV (rU ) (9)

Security of Blom’s scheme The security of the scheme relies on the fact that no individual user
can derive the original polynomial f from its polynomial g.

Theorem 1. The Blom KPS with k = 1 is unconditionally secure against any individual user.
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Proof. Let W attempt to compute KU,V which is given by KU,V = a+ b(rU + rV ) + crUrV mod p.

User W knows the coefficients of its own polynomial aW = a+ brw mod p, bW = b+ crW mod p,

and the publicly known values rU , rV Assume that W conjectures that KU,V = K∗ ∈ Zp. Then we
can write a system of three equations with all the unknowns in a matrix form





1 rU + rV rUrV
1 rW 0
0 1 rW









a

b

c



 =





K∗

aW
bW



 . (10)

The determinant of the coefficient matrix is D = (rW − rU )(rW − rV ) with calculations being
done in Zp. Since by assumption rW 6= rV 6= rU and p is a prime the coefficient determinant is
non-zero and hence there is a unique solution in Zp for a, b, c. Therefore for each choice of K∗ we
derive a new triplet of a, b, c and W cannot compute KU,V

Theorem 2. Any coalition of two users can compute the keys for all the users of the networks

Proof. The two users can construct a system of four equations with three unknowns and solve for
a, b, c. Hence they can recover f(x, y) and given that rU are public compute any key KU,V .

Generalization of Blom’s scheme to arbitrary k Blom’s scheme can be generalized to sustain
the compromise of k users by having the TA employ a polynomial of degree k.

1. Let p be a large prime publicly known and let the TA select an element rU ∈ Zp for each user
U which also made public with rU 6= rV for U 6= V.

2. for 0 ≤ i, j ≤ k, the TA chooses random elements ai,j ∈ Zp such that ai,j = aj,i and forms the
polynomial:

f(x, y) =
k

∑

i=0

k
∑

j=0

ai,jx
iyj mod p. (11)

The polynomial f is symmetric, i.e., f(x, y) = f(y, x).
3. For each user U, the TA computes

gU (x) = f(x, rU ) mod p =

k
∑

i=0

aU,ix
i, (12)

and sends the coefficient vector aU = {aU,0, . . . , aU,k} to U, over a secure channel.
4. If U, V want to communicate, they individually compute the common key

KU,V = KV,U = f(rU , rV ), (13)

with user U computing
KU,V = gU (rV ) (14)

and V computing
KU,V = gV (rU ), (15)

Theorem 3. The generalized Blom’s KPS is unconditionally secure against the compromise of any

set of k users, while a coalition of k + 1 can derive any key desired.

The goal of the coalition of k + 1 users will be able to compute the key of any two nodes, if it
can reconstruct the polynomial f(x, y) from which all gU (x) are derived. The ability of the coalition
to succeed is reflected in the following polynomial interpolation theorem.
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Theorem 4. Lagrange Interpolation formula–Let p be a prime and let x1, x2, . . . , xm+1 be

distinct elements in Zp and let a1, a2, . . . , am+1 also be elements in Zp not necessarily distinct.

There is a unique polynomial A(x) ∈ Zp[x] having a degree of at most m such that A(xi) = ai. This

polynomial is given by

A(x) =

m+1
∑

j=1

aj
∏

1≤h≤m+1, h 6=j

x− xh

xj − xh

. (16)

This formula also has a bivariate form

Theorem 5. Bivariate Lagrange Interpolation formula–Let p be a prime and let x1, x2, . . . , xm+1

be distinct elements in Zp and let a1(x), a2(x), . . . , am+1(x) be polynomials in Zp[x] of degree at most

m. There is a unique polynomial A(x, y) ∈ Zp[x, y] having a degree of at most m in both x and y

such that A(x, yi) = ai(x). This polynomial is given by

A(x, y) =

m+1
∑

j=1

aj(x)
∏

1≤h≤m+1, h 6=j

y − yh

yj − yh
. (17)

We now show how a coalition of k users can use the Bivariate Lagrange Interpolation formula to
break Blom’s scheme via an example.

Example: Let p = 13,m = 2, and pick y1 = 1, y2 = 2 and y3 = 3

a1(x) = 1 + x = x2,

a2(x) = 7 + 4x2

a3(x) = 2 + 9x.

(y − 2)(y − 3)

(1− 2)(1− 3)
= 7y2 + 4y + 3,

(y − 1)(y − 3)

(2− 1)(2− 3)
= 12y2 + 4y + 10,

(y − 1)(y − 2)

(3− 1)(3− 2)
= 7y2 + 5y + 1,

The bivariate polynomial becomes:

A(x, y) = a1(x)(7y
2 + 4y + 3) + a2(x)(12y

2 = 4y + 10) + a3(x)(7y
2 + 5y + 1) mod 13

= y2 + 3y + 10 + 5xy2 + 10xy + 12x+ 3x2y2 + 7x2y + 4x2.

One can verify that A(x, yi) = ai(x).
It is fairly straightforward to see that a coalition of k + 1 will know k + 1 polynomials of degree

k. Hence, using the bivariate Lagrange interpolation formula they can reconstruct f(x, y) and derive
any key they want. We also need to show that when the users in the coalition are less or equal to k

then Blom’s scheme is secure. This can be shown as follows:
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Let K be the key corresponding to the user whose key needs to be computed, and let K∗ be the
key conjectured by the coalition. Then there is a symmetric polynomial f∗(x, y) defined as follows.

f∗(x, y) = f(x, y) + (K∗ −K)
∏

1≤i≤k

(x− rWi
)(y − rWi

)

(rU − rWi
)(rV − rWi

)
. (18)

It is easy to see that f∗ is a symmetric polynomial. Also f∗ is consistent with all the information
known to the coalition cause the product contains a term (y− rWi

). Hence it follows that regardless
of the value of K∗

f∗(x, rWi
) = f(x, rWi

) = gWi
(x). (19)

Finally for computing KU,V

f∗(rU , rV ) = f(rU , rV ) +K∗ −K = K∗ (20)

So any value of K∗ would actually be consistent with the information that the coalition holds,
and the coalition cannot determine any other key in the network.

2 Session Key Distribution

In a session key distribution scheme, two users Alice and Bob are able to establish a shared secret K
with the aid of the TA. For the purpose of establishing K the TA needs to generate and distribute
K, and hence, needs to be online.

2.1 The Needham-Schroeder Scheme

The NS scheme was proposed in 1978 and it involves the following steps:

1. Alice selects rA and sends IDA||IDB ||rA to the TA.

2. The TA generates K and computes

tBob = eKB
(K||IDA)

y1 = eKA
(rA||IDB ||K||tBob)

and sends y1 to Alice.

3. Alice obtains K, tBob, and sends tBob to Bob.

4. Bob obtains K from tBob, chooses rB and computes y2 = eK(rB) and sends it to Alice.

5. Alice replies with y3 = eK(rB − 1).

The protocol flows are illustrated in figure 1. In addition to verifying the reception of the correct
messages, additional validity checks are performed on the decrypted messages as follows:

– Alice makes sure that the decryption of y1 has the right form.

– Also Bob makes sure that the decryption of y3 yields rB − 1.
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Fig. 1. The NS SKDS.

2.2 Attacks on the NS scheme

Denning and Sacco describe a known session key attack against the NS scheme that is as follows.
Assume that Eve somehow obtained key K that was used during a session S between Alice and Bob.
Assume now that Eve initiates a new session S′ with Bob. Since Bob is not aware of the messages
exchanged between Alice and the TA, eve can start from the third flow of the protocol and send
tBob from session S to Bob. Bob will reply with rB′ encrypted with K. Since Eve knows the key K

from the previous session, it will be able to decrypt y2 and reply with rB′ − 1 encrypted with K.

2.3 Kerberos Session Key Distribution Scheme

Kerberos refers to a series of SKDS developed at MIT during late 1980s. It is designed to provide
strong authentication for client/server applications by using secret-key cryptography.

1. Alice selects rA and sends IDA||IDB ||rA to the TA.
2. The TA generates K chooses a lifetime L and computes Bob’s ticket and y1

tBob = eKB
(K||IDA||L)

y1 = eKA
(rA||IDB ||K||L)

The TA sends y1, tBob to Alice.
3. Alice obtains K, and computes y2 = eK(IDA||time), and sends tBob, y2 to Bob.
4. Bob obtains K from tBob, and time from y2, and replies to Alice with y3 = eK(time+ 1).

As in the case of the NS scheme several validity checks are being performed during the execution
of the Kerberos protocol.

1. Alice checks the correct format of the decrypted y1.

2. Bob checks the correct order of y2 when decrypted, and also checks that time < L.

3. Alice checks that the decrypted y3 is time+ 1.

2.4 Comparison of NS scheme with Kerberos Scheme

Though the two schemes have similar structure the Kerberos scheme has certain advantages com-
pared to the NS scheme. First although tBob is intended to reveal K to Bob, it is doubly encrypted
with Alice’s secret key. This double encryption adds unnecessary complexity without offering any
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Fig. 2. The Kerberos V5 SKDS.

extra security and, hence, is removed in the Kerberos scheme. Furthermore, the use of the expiration
time L limits the time that the scheme is vulnerable to the DS attack.

On the other hand, such a solution requires the use of synchronized clocks among the network
participants. Security proofs involving timestamps are in general hard to be constructed and use
of random nonces is preferred. Confirmation of the key by both parties (flows that use K as the
encrypting key) is not necessarily an important attribute of SKDS and often is omitted. Most impor-
tantly in both schemes, confidentiality and authenticity is both provided via encryption. However,
it is preferred to provide confidentiality via encryption and authenticity via a MAC. For example
this can be done by having the TA send the following message to Alice on the second protocol flow.

y1 = (eKB
(K),MACKB

(IDA||eKB
(K))),

y′1 = (eKA
(K),MACKA

(IDA||rA||eKA
(K))),

Even this modification does not prevent the DS attack. To prevent this attack, Bob needs to be
involved in the request from Alice and prior to the reception of the session key K.

2.5 The Bellare-Rogaway Scheme

In the BR scheme, both Alice and Bob interact with the TA. The steps executed are as follows.

1. Alice selects rA and sends IDA||IDB ||rA to the TA and rA to Bob.
2. Bob selects rB and sends IDA||IDB ||rA||rB to the TA.
3. The TA generates K and computes

yB = (eKB
(K),MACKB

(IDA||IDB ||rB ||eKB
(K)))

yA = (eKA
(K),MACKA

(IDA||IDB ||rA||eKA
(K)))

The TA sends yA to Alice, and yB to Bob.

2.6 Formal Definition of Security for a SKDS

Definition 1. A SKDS is assumed to be secure if the probability that a participant knows the session

key K is very small, given that another participant has already accepted.
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Assumptions

First of all we make the following assumptions

1. Alice, Bob and the TA are honest
2. The encryption scheme and the MAC are secure.
3. The secret keys KA,KB are only known to the intended participants.
4. The nonces used in the scheme and the generation of the key K are assumed to be perfectly

random.

We also define an adversarial model for Eve. We consider the following possibilities.

Adversarial Model

1. Eve is a passive eavesdropper
2. Eve is active and may try to impersonate Bob, or the TA.
3. Eve is active and may try to impersonate Eve or the TA.

With respect to the adversarial model we can prove the security of the BR scheme as follows.

1. In the case of an eavesdropper, Eve can obtain yA, yB but since the encryption scheme is assumed
to be secure, Eve cannot obtain K. Also both Alice and Bob will accept since Eve is just a passive
listener.

2. Let’s now assume that Eve is impersonating Bob. When Alice receives yA it can verify that
this message was generated by the TA by validating the MAC, since only the TA is assumed
to know the key KA, the MAC incorporates the random nonce rA, and the MAC is assumed to
be secure. Furthermore, the inclusion of the encrypted K in the MAC prevents the alteration of
the eKA

(K) in yA. Hence, Alice can be sure that only Bob can obtain K.
3. Similar analysis as in the previous case can be done for the case where Eve impersonates Alice

to Bob.


