ECE 583

Lecture 5
Solar radiometry overview, sensor design, radiometer
examples

Applications
«Satellite Solar Occultation Measurement of Gas and Aerosol Concentration

*Airborne Survey Experiments for Aerosol Characteristics and Gas
Concentration

*Ground Based Experiments and Global Networks for Aerosol and Cloud
Monitoring

52 What is solar radiometry?

Viewing the sun directly with a spectroradiometer allows
information about the sun and atmosphere to be derived
= Solar radiometry has a long history of use dating to the late 1800s and
early 1900s
« Early efforts more interested in determining solar characteristics
» Samuel Langley used this approach in an attempt to measure the solar
constant

= I[mprovements in detector technology and spectral selection led to
development of systems to derive atmospheric properties
= Solar radiometers are currently used to derive
* Aerosol amounts
* Aerosol sizes
» Water vapor, ozone, and other gaseous absorber amounts
» Absolute solar output as a function of wavelength

53 Why study solar radiometry?

Solar radiometry is an example of a passive remote sensing
system that allows a basic understanding of the sensor and
applications of remote sensing
= Basic radiometric system
* Examine the sensor components
» Sensor design
* Optimization

= Application requires approaches typical of all remote sensing problems
» Underdetermined problem requiring assumptions to allow solution
* Sensor defines outcome
* Noise

= Results of application can be used to determine changes to the sensor
design
* Diffuse skylight correction
» Sky radiance measurements

. Radiometric system
All radiometric systems have the same Output
basic components .
Signal
= Source Processing
= Object
= Transmission medium Detector
= Optical system
= Detector

= Signal processing
= Qutput

Source

Object




> Solar radiometry

In the case of solar radiometry, the source, object, and
transmission media become intermingled
= Absolute solar radiometry uses the sun as the source and object

= Atmospheric studies use the sun as the source and the transmission
media as the object

Optical Thickness Basics

The optical thickness, 1, of a media is related to the transmission by:

T=exp(-1)
Useful approximation for small optical thickness T =1-1

Unlike transmission, optical thickness is proportional to the amount, density times
thickness, of the media.
t© =1 where T =.368 with doubled density or thickness gives t =2 where T = .135

The total optical thickness is the sum molecular scattering, gas absorption,
aerosol scattering and absorption and cloud scattering losses.

Typical values
Molecular Scattering: .55um — 0.1, 1.06um - .007 (4t power dependence)
Ozone Absorption: .55um —0.03, .32um-.3
Aerosol Scattering and Absorption: Tucson - .08 SE Asia Cities - .8-2
Cirrus clouds: .001-.5, All Clouds: To over 1000

Basic Solar Radiometer (Photometer) Principal

I() = 1,() exp[- T(A)m]
Where I,(1) is the instrument intensity signal outside the atmosphere
And m the relative air mass (to first order - secant of the solar zenith angle)

(%) = -log[l (1) / 1,(1) Im

Error - dt(x) = d(I(x) / 1,(A))
for example
A 1% measurement error for t=.01give a 100% error of the optical thickness
thus
Calibration and Stability are fundamentally important

e Solar output

Solar irradiance on the earth drives weather and climate

= Solar radiometers have been used to study both the spectral and total
irradiance

= Ground-based,
balloon-borne,
space-borne
radiometers

= Accuracy and precision
improving but still an
issue

Solar Irradiance (Neckel & Labs, 1983)
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Aerosol parameters Ozone and water vapor
Use measurements as a function of wavelength to infer Once the Junge parameter is known, the total, molecular, and
amount of aerosols and type/size aerosol optical depths can be computed for any wavelength
o Measured A iz = Optical depth curves include a measured value (440 nm) and derived
Sors © value (550 nm)
2o § = Water vapor and ozone amounts are shown for the same period
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What are solar radiometers

Every solar radiometer has similar
components

A/D and Storage

Tracking

Solar radiometer examples

Images below show 10-band solar radiometers constructed at
the University of Arizona
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Solar radiometer examples

Images below show a French-built Cimel sun photometer
= Key difference with this instrument is that it &
is deployed and left behind

= Satellite transmitter allows remote
operation

= This system also allows for measurements
of sky radiance
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Cimel/Aeronet example

Aeronet is a collection of ground-based radiometers viewing
the sun and sky to derive information about dust content

= Goal is to assist in global assessment of dust composition and amount
= Serve as ground truth for satellite-based measurements

SeaWiF5 composite LECOPE A MODLAND
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Cimel example

Can see here the components in
the following images

= The two telescopes visible give
different fields of view

= Band selection and detectors are not
obvious but are at the base of the
telescope
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Sky radiance

Sky radiance and optical depth data are used to determine
aerosol size distribution
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Sky radiance Size distribution retrieval
The next level of improvement for characterizing the T il - Leon  rerLessts - o oies
atmosphere is to use sky radiance measurements SSACETEY = D831 REFR(E73 = 1.608 REFICETZ) = @163
SEACETIY = B.848 REFR(272) = 1.&E80 REFI (272 = B.8172
= AlImucantar scans measure the radiance from the sky at a constant SSAC1BZZ) = @.818 REFR(1@22 = 1.6@@ REFICIARZ) = @.@173
elevation while rotating in azimuth 8. B85
= Principle plane scans measure the sky radiance at a constant azimuth
angle while scanning in elevation through the sun o.oms |
= Most of the information for retrieving aerosol properties are contained in &
measurements near the sun E
« Difficult to measure due to MTF and stray light effects ¢08.003 -
* Dynamic range is also an issue since the radiance changes rapidly with i
angle near the sun -
@.88z
= Cimel sun photometers are the most common instrument currently for E
making these measurements a
* Inversion of the radiance measurements yields aerosol size distribution Fo.om |-
» Advantage to Cimel instruments are that they can be deployed for many &
months at a time 8 | |
= Advantage of sky radiance data is that it contains more information ma'aaaa_m a1 1 18 168
regarding the larger aerosol particles
Particle Radius tmkm?
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Cimel solar radiometer

Major advantage to Cimel is that it can be used to study the
atmosphere at a given site for an extended period

= Results below are from Tucson in 2000
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Cimel size distribution

Sky radiance data allows retrieval of size distribution

T 38
= The aerosol size (%
has also been 3.6
evaluated for the 3.4
year 2000 by °
month based on N 3.2
the solar 2 30
transmittance 2 )3
= Larger particles e -
are seeninspring & 2.6
= Smaller particles 2.4
typical in during o)
wet season s -
= Makes some § 2.0

sense since wind
conditions tend to
pick up large dust
particles




Smoke studies

Ability to study particle concentration and size leads to the
conclusion that rare events can be studied

= Requires a combination of routine measurements as well as “fortuitous”

winds to bring the smoke to the instrument

 Cimel radiometer was not
in operation in Tucson until
July 15, 2003

» Other RSG radiometers have
been operated on a regular
basis since February 2003

= Aspen fire started June 10, 2003

* Prevailing winds kept most of
the smoke to the north and
east of the Catalinas

* Could have chased the smoke,
but logistics and travel restrictions
prevented this

* Wind shift in late June brought
the smoke into the Tucson valley
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Terra and Aqua MODIS June 19

= Clear advantage to
having sensors viewing
at separate times during
the day

= Note the smoke is being Tucson. AZ
driven to the north and
east away from the
Tucson valley

= Also note the cloud
development between
the two images

Terra MODIS 17:85 UTC

Tucson. AZ

Aqua MODIS 21:05 UTC

e Subsequent dates

ASTER on June 26, 2003

June 22, 2003
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Wind shifted in late June

June 29, 2003 June 30, 2003 in Tucson
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Smoke data

Results here are from measurements that were made on June
30 near downtown

= Graph on the left shows the relative concentration of particles
= Graph on right is related to particle size
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Retrieved AOD

Aerosol optical depth far exceeded typical values for
June and July

» Standard deviations of average are 0.05 in optical depth
= | owest values on

= Historical results from 2000 show that these data are quite different from June 30 exceed 0.40 I
what is typically expected average by 1o %_
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Retrieved Junge Parameter

Junge Parameter values exceed the average from
2000 by 10

= Junge parameter is more stable in time than the AOD

= Small values at 19 UTC
are due to power lines s8]
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Can also get high optical depths from cirrus as well
but this gives small Junge parameter
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October 2003 case study

Fires in Southern California in October 2003 provided
another opportunity to study smoke
October 26
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Optical depth results

Optical depths increased dramatically due to a frontal

system moved in with strong winds and clouds

= Aerosol amount increased due to blowing dust and
clouds

What about smoke?

Ferasol Optical Thickress
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Smoke presence?

Numerous reports of citizens
smelling smoke on Oct. 28

= Trajectory analysis by NOAA
indicated the smoke traveled

further north by >200 km

m Passive radiometer data shows

primarily dust and clouds
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October 29

Data from October 29 shows,,

possible smoke signature , .
S0
= No reports of smoke on this ;s ——
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Solar radiometer examples

MFRSR - Multifilter rotating shadowband radiometer

= The MFRSR does not strictly fit our notion of the solar radiometer
= However, the analog of all parts are still present in this example

= A critical difference from the others is that the receiver is permanently
mounted in a horizontal position
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MFRSR

Multi-filter, rotating, shadowband radiometer is a commercial
system used to measure downwelling irradiance

= Both total (solar and skylight) and diffuse (block the solar disk)

= Can derive the solar component by differencing the total (also referred to
as the global) irradiance and the diffuse

= The diffuse gives information regarding clouds and aerosol absorption

= MFRSR can also be deployed for extended periods
 Will suffer some degradation of the collector
* However, most often the ratio of diffuse to global is used to assess the
aerosol absorption and this is not as sensitive to changes in collector
* BRDF tends to remain constant with time, thus Langely method can be
used to assess any degradation
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Measured downwelling irradiance

Current shadowband designs allow for direct and diffuse
measurements in a spectral sense
= Graph on the left is the global or total irradiance and the graph on the right

is the diffuse component only

= Note that the diffuse measurement at 415 nm is the largest
= The global irradiance at 500 nm is the largest
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Measured downwelling irradiance

Because the angular response of the sensors is reasonably
well known, the cosine incident effect of the direct irradiance
can be corrected
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Measured downwelling irradiance

Most climate and meteorological models are interested in total
downwelling irradiance (over all wavelengths)

= Spectral values can be

MFRSR C1 (20020924) Broadband

MFRSR C1 (20020924) Narrowband

= Graph to the right is the = 15
global irradiance corrected £ [4150
so as to simulate an I S
instrument always pointing X [500.0
directly at the sun B AN
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“integrated” to give a total
downwelling value

= Makes assumptions
regarding the spectral
shape of the
downwelling irradiance

= The data on this page and
previous page were
obtained from the
Department of Energy’s
ARM (Atmospheric I
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Measured downwelling irradiance - cloudy

Previous graphs were for clear skies while the figures below is
for cloudy conditions

= Clouds are most
noticeable in the
global when the
sun is obscured

= Clouds will still
be apparent in
the diffuse even
if the sun is
never covered
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Diffuse irradiance in cloudy skies

Diffuse irradiance in cloudy skies can increase dramatically in

the presence of clouds
MFRSR C1 {20020801) Narrowband

Diffuze Hernispheric Irradianca (W/{m2 nm}}

ra
T

= = = I
-+ =] o o

[ }
]
T

=
o

r415.0

L500.0

g 10 15 20
Time (UTC)




