5-1

## ECE 583

#### Lecture 5 Solar radiometry overview, sensor design, radiometer examples

#### **Applications**

•Satellite Solar Occultation Measurement of Gas and Aerosol Concentration

Airborne Survey Experiments for Aerosol Characteristics and Gas
Concentration

•Ground Based Experiments and Global Networks for Aerosol and Cloud Monitoring

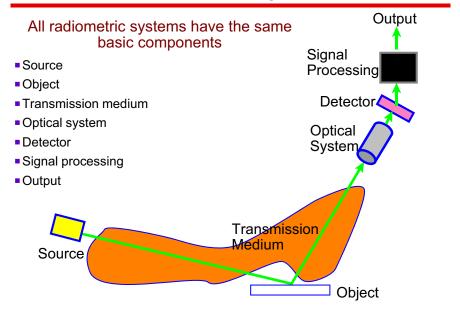
# What is solar radiometry?

#### Viewing the sun directly with a spectroradiometer allows information about the sun and atmosphere to be derived

- Solar radiometry has a long history of use dating to the late 1800s and early 1900s
- · Early efforts more interested in determining solar characteristics
- Samuel Langley used this approach in an attempt to measure the solar constant
- Improvements in detector technology and spectral selection led to development of systems to derive atmospheric properties
- Solar radiometers are currently used to derive
- Aerosol amounts
- Aerosol sizes
- · Water vapor, ozone, and other gaseous absorber amounts
- Absolute solar output as a function of wavelength

5-3

# Why study solar radiometry?

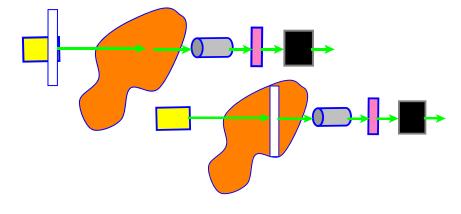

Solar radiometry is an example of a passive remote sensing system that allows a basic understanding of the sensor and applications of remote sensing

- Basic radiometric system
- Examine the sensor components
- Sensor design
- Optimization
- Application requires approaches typical of all remote sensing problems
- · Underdetermined problem requiring assumptions to allow solution
- Sensor defines outcome
- Noise
- Results of application can be used to determine changes to the sensor design
- Diffuse skylight correction
- Sky radiance measurements

5-4

5-2

## **Radiometric system**




#### **Optical Thickness Basics**

## **Solar radiometry**

# In the case of solar radiometry, the source, object, and transmission media become intermingled

- Absolute solar radiometry uses the sun as the source and object
- Atmospheric studies use the sun as the source and the transmission media as the object



The optical thickness,  $\boldsymbol{\tau},$  of a media is related to the transmission by:

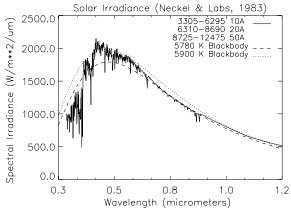
 $T = exp (-\tau)$ Useful approximation for small optical thickness T = 1-  $\tau$ 

Unlike transmission, optical thickness is proportional to the amount, density times thickness, of the media.

 $\tau$  = 1 where T = .368 with doubled density or thickness gives  $\tau$  = 2 where T = .135

The total optical thickness is the sum molecular scattering, gas absorption, aerosol scattering and absorption and cloud scattering losses.

<u>Typical values</u> Molecular Scattering: .55um – 0.1, 1.06um - .007 (4<sup>th</sup> power dependence)


Ozone Absorption: .55um – 0.03, .32um - .3 Aerosol Scattering and Absorption: Tucson - .08 SE Asia Cities - .8-2 Cirrus clouds: .001- .5, All Clouds: To over 1000

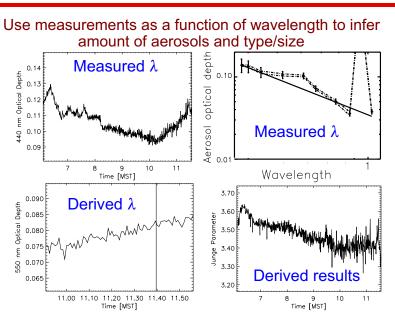
5-6

## Solar output

#### Solar irradiance on the earth drives weather and climate

- Solar radiometers have been used to study both the spectral and total irradiance
  Solar Irradiance (Neckel & Laber 1983)
- Ground-based, balloon-borne, space-borne radiometers
- Accuracy and precision improving but still an issue

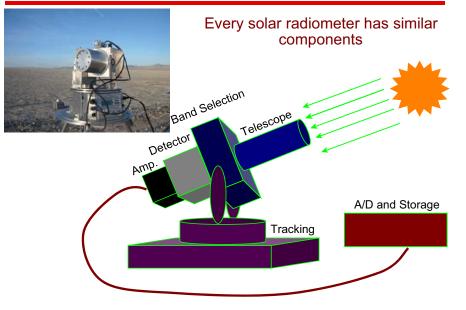



 $I(\lambda) = I_o(\lambda) \exp[-\tau(\lambda)m]$ Where I<sub>o</sub>(\lambda) is the instrument intensity signal outside the atmosphere And m the relative air mass (to first order - secant of the solar zenith angle)

**Basic Solar Radiometer (Photometer) Principal** 

 $\tau(\lambda) = -log[l(\lambda) / l_o(\lambda)]/m$ 

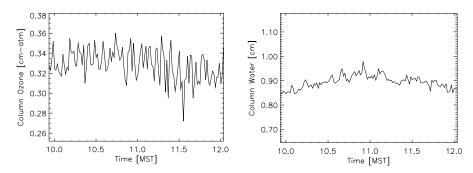
 $\begin{array}{l} \text{Error - } d\tau(\lambda) = d(I(\lambda) \ / \ I_o(\lambda)) \\ \text{for example} \\ \text{A 1\% measurement error for } \tau = .01 \text{give a 100\% error of the optical thickness} \\ \text{thus} \\ \text{Calibration and Stability are fundamentally important} \end{array}$ 


## **Aerosol parameters**



#### 5-9

5-7


# What are solar radiometers



## **Ozone and water vapor**

# Once the Junge parameter is known, the total, molecular, and aerosol optical depths can be computed for any wavelength

- Optical depth curves include a measured value (440 nm) and derived value (550 nm)
- Water vapor and ozone amounts are shown for the same period



5-10

5-8

## **Solar radiometer examples**

# Images below show 10-band solar radiometers constructed at the University of Arizona



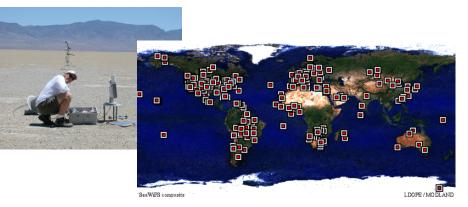


# Solar radiometer examples

#### Images below show a French-built Cimel sun photometer

- Key difference with this instrument is that it is deployed and left behind
- Satellite transmitter allows remote operation
- This system also allows for measurements of sky radiance






5-12

# **Cimel/Aeronet example**

#### Aeronet is a collection of ground-based radiometers viewing the sun and sky to derive information about dust content

- Goal is to assist in global assessment of dust composition and amount
- Serve as ground truth for satellite-based measurements



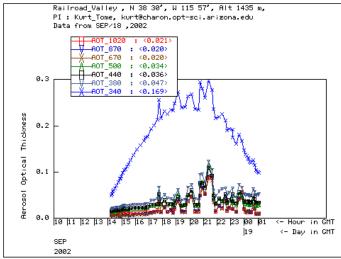
5-13

# **Cimel example**

# Can see here the components in the following images

- The two telescopes visible give different fields of view
- Band selection and detectors are not obvious but are at the base of the telescope





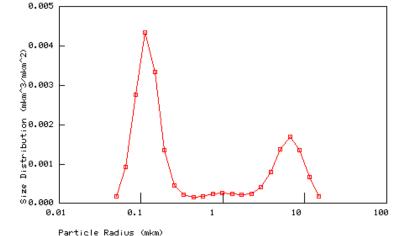



5-14

# Sky radiance

# Sky radiance and optical depth data are used to determine aerosol size distribution



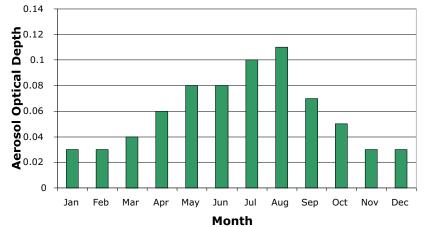

#### The next level of improvement for characterizing the atmosphere is to use sky radiance measurements

- Almucantar scans measure the radiance from the sky at a constant elevation while rotating in azimuth
- Principle plane scans measure the sky radiance at a constant azimuth angle while scanning in elevation through the sun
- Most of the information for retrieving aerosol properties are contained in measurements near the sun
- Difficult to measure due to MTF and stray light effects
- Dynamic range is also an issue since the radiance changes rapidly with angle near the sun
- Cimel sun photometers are the most common instrument currently for making these measurements
- Inversion of the radiance measurements yields aerosol size distribution
- Advantage to Cimel instruments are that they can be deployed for many months at a time
- Advantage of sky radiance data is that it contains more information regarding the larger aerosol particles

5-16

# Size distribution retrieval



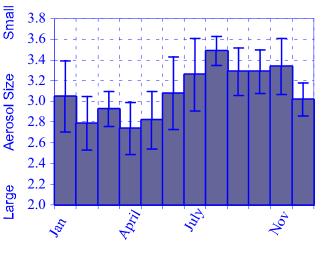



5-17

# **Cimel solar radiometer**

# Major advantage to Cimel is that it can be used to study the atmosphere at a given site for an extended period

Results below are from Tucson in 2000



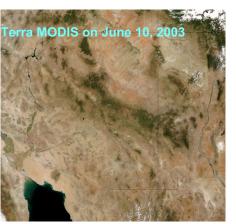

5-18

## **Cimel size distribution**

#### Sky radiance data allows retrieval of size distribution

- The aerosol size has also been evaluated for the year 2000 by month based on the solar transmittance
- Larger particles are seen in spring
- Smaller particles typical in during wet season
- Makes some sense since wind conditions tend to pick up large dust particles




## **Smoke studies**

# Ability to study particle concentration and size leads to the conclusion that rare events can be studied

- Requires a combination of routine measurements as well as "fortuitous" winds to bring the smoke to the instrument
- Cimel radiometer was not in operation in Tucson until July 15, 2003
- Other RSG radiometers have been operated on a regular basis since February 2003

#### Aspen fire started June 10, 2003

- Prevailing winds kept most of the smoke to the north and east of the Catalinas
- Could have chased the smoke, but logistics and travel restrictions prevented this
- Wind shift in late June brought the smoke into the Tucson valley



 Clear advantage to having sensors viewing at separate times during the day

5-20

- Note the smoke is being driven to the north and east away from the Tucson valley
- Also note the cloud development between the two images





Aqua MODIS 21:05 UTC

**Terra and Aqua MODIS June 19** 

#### 5-21

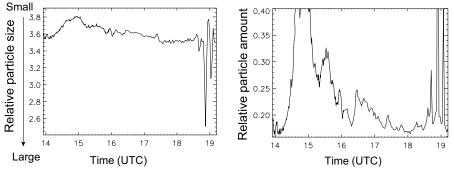
# Subsequent dates



#### ASTER on June 26, 2003



#### 5-22

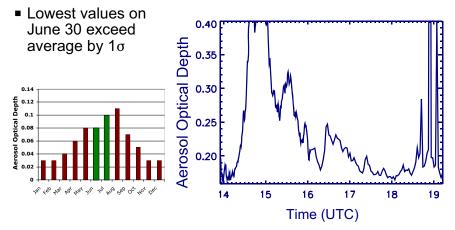

# June 29, 2003 June 30, 2003 in Tucson

Wind shifted in late June

# Smoke data

# Results here are from measurements that were made on June 30 near downtown

- Graph on the left shows the relative concentration of particles
- Graph on right is related to particle size
- Historical results from 2000 show that these data are quite different from what is typically expected

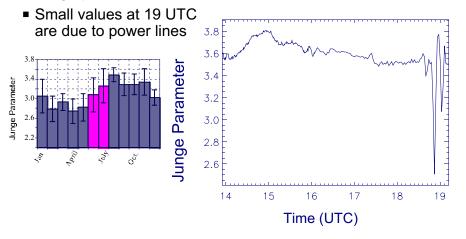



5-24

# **Retrieved AOD**

# Aerosol optical depth far exceeded typical values for June and July

Standard deviations of average are 0.05 in optical depth

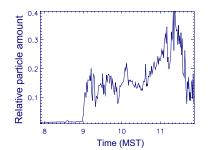


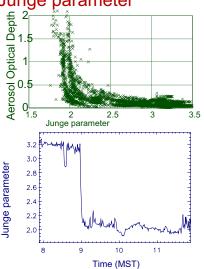

5-25

# **Retrieved Junge Parameter**

# Junge Parameter values exceed the average from 2000 by $1\sigma$

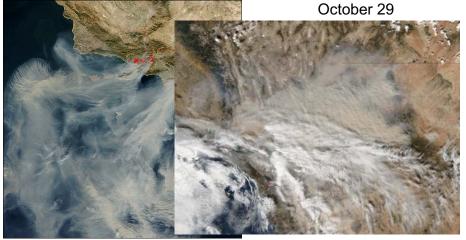
Junge parameter is more stable in time than the AOD





5-26

# **Comparison to cirrus**

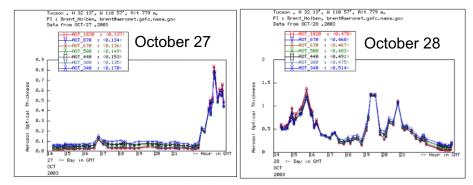
## Can also get high optical depths from cirrus as well but this gives small Junge parameter


- Fresh smoke can also give large optical depth and small Junge parameter
- True of fresh smoke





# October 2003 case study

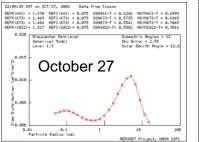

### Fires in Southern California in October 2003 provided another opportunity to study smoke October 26

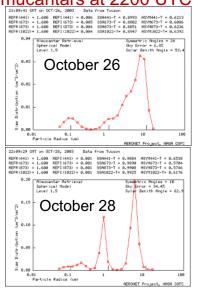


#### 5-28

# **Optical depth results**

- Optical depths increased dramatically due to a frontal system moved in with strong winds and clouds
- Aerosol amount increased due to blowing dust and clouds
- What about smoke?





5-29

# Size distributions

## Size distributions from almucantars at 2200 UTC

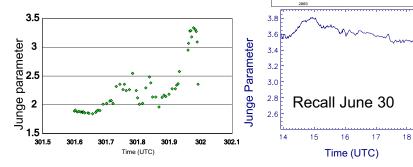
- Plots are number densities for given particle sizes
- Upper right is Oct. 26 and shows a dominance of large particles as does Oct. 27 below
- Note 2nd peak on Oct. 28





## 5-30

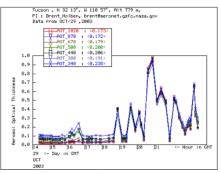
# Smoke presence?

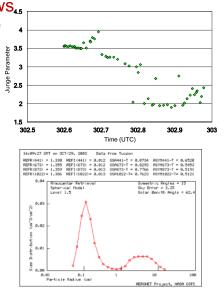

13', W 110 57', Alt 779 m,

19

Brent\_Holben, brent@ae from OCT/28 ,2903

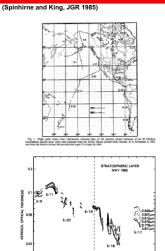
# Numerous reports of citizens smelling smoke on Oct. 28


- Trajectory analysis by NOAA indicated the smoke traveled further north by >200 km
- Passive radiometer data shows primarily dust and clouds




# October 29

# Data from October 29 shows


- No reports of smoke on this date
- Sizes are more indicative of § 25 smoke





#### El Chichon Solar Photometer Experiment on NASA CV990 Airborne Laboratory – 1982/1983





LATTUDE Stratospheric aerosol optical thickness as a function of latitude for May 1983 and for all wavelengths in the rang  $0.440 \text{ am} \leq \lambda \leq 0.871 \text{ am}$ . Only results for flights through the central Pacific are shown.

5-32

## **Solar radiometer examples**

#### MFRSR - Multifilter rotating shadowband radiometer

- The MFRSR does not strictly fit our notion of the solar radiometer
- However, the analog of all parts are still present in this example
- A critical difference from the others is that the receiver is permanently mounted in a horizontal position





#### El Chichon Solar Photometer Experiment on NASA CV990 Airborne Laboratory - 1982/1983

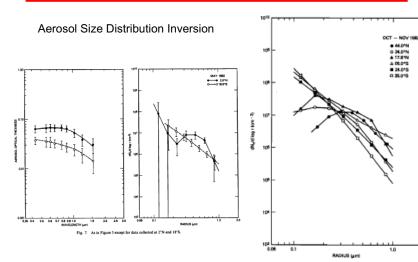
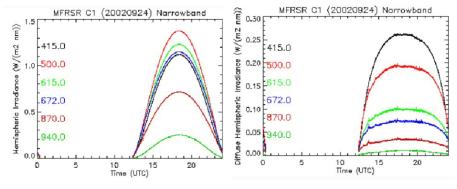



Fig. 11. Inverted size distributions for October and November 1982 for latitudes from 44°M to 35°S, where optical thickness data were only available from the visible solar radiometer (0.440  $\mu m \leq \lambda \leq 0.871$  µm).


# Multi-filter, rotating, shadowband radiometer is a commercial system used to measure downwelling irradiance

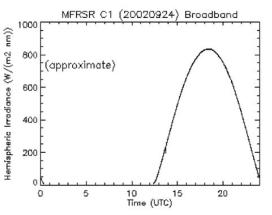
- Both total (solar and skylight) and diffuse (block the solar disk)
- Can derive the solar component by differencing the total (also referred to as the global) irradiance and the diffuse
- The diffuse gives information regarding clouds and aerosol absorption
- MFRSR can also be deployed for extended periods
- Will suffer some degradation of the collector
- However, most often the ratio of diffuse to global is used to assess the aerosol absorption and this is not as sensitive to changes in collector
- BRDF tends to remain constant with time, thus Langely method can be used to assess any degradation

# Measured downwelling irradiance

# Current shadowband designs allow for direct and diffuse measurements in a spectral sense

- Graph on the left is the global or total irradiance and the graph on the right is the diffuse component only
- Note that the diffuse measurement at 415 nm is the largest
- The global irradiance at 500 nm is the largest




5-36

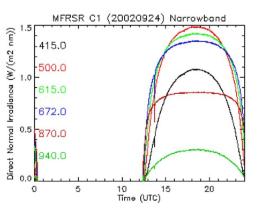
5-34

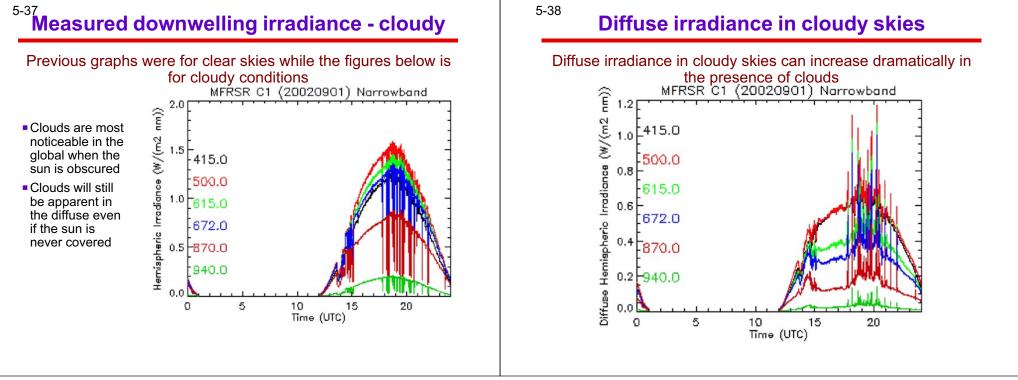
# Measured downwelling irradiance

# Most climate and meteorological models are interested in total downwelling irradiance (over all wavelengths)

- Spectral values can be "integrated" to give a total downwelling value
- Makes assumptions regarding the spectral shape of the downwelling irradiance
- The data on this page and previous page were obtained from the Department of Energy's ARM (Atmospheric Radiation Measurement) program




http://education.arm.gov/nsdl/Visualization/nsa\_quicklook\_interface.shtml


#### 5-35

# Measured downwelling irradiance

Because the angular response of the sensors is reasonably well known, the cosine incident effect of the direct irradiance can be corrected

- Graph to the right is the global irradiance corrected so as to simulate an instrument always pointing directly at the sun
- Note how the lines cross early and late in the day
- Also note that the 870-nm band has the flattest curve



