Sec. 4.3 Splitting Algorithms 4 ' _ 289

Drift . Departures - Ge~ 2G

Arrivals

Equilibrium

f
{
1
|
|

TG=Xx - G=12

Figure 4.8 - Pure Aloha as a function of the attempted transmission rate G. Successful
departures leave the system at a rate Ge™2C, and arrivals. occur at a rate A, leading to
a hypothesized equilibrium at the point shown.

, S

s

S ,
4.3 SPLITTING ALGORITHMS

We have seen that slotted Aloha requires some care for stabilization and is also essen-
tially limited to throughputs of 1 /e. We now.want to-look at more sophisticated collision
resolution techniques that both maintain Sstability without any complex estimation pro-
cedures and also increase the achievable throughput. To get an intuitive idea of how
this can be done, note that with relatively small attempt rates, when a collision occurs,
it is most likely between only two packets. Thus, if new arrivals could be inhibited
from transmission until the collision was resolved, each of the colliding packets could
be indépendently retransmitted in the next slot with probabiiity 1/2. This would lead
to a successful ‘transmission for one of the packets with probability 1/2, and the other
~could then be transmitted in the following slot. Alternatively, with probability 1/2, an-
other collision or anidle slot occurs. In this case, each of the two packets would again
‘be independently transmitted in the next slot with probability 1/2, and so forth until a
successful transmiés,ion occurred, which would be followed by the transmission of the
remaining packet, ' ' '
~ With the strategy above, the two packets require two slots with probability 1/2,
- three slots with -probability 1/4, and i slots with probability 27¢~D_ The expected
number of slots for sending these two packets can thus be calculated to be three, yielding
a throughput of 2/3 for the period during which the collision is being resolved.

There are various ways in which the nodes involved in a collision could choose
whether or not to transmit in successive slots. Each node could simply flip an unbiased-
‘coin for each choice.’ Alternatively (in a way 10 ‘be described -precisely later) each
node could.use the arrival time of its collided packet. Finally, assuming a finite set of
-nodes, each with-a unique identifier represented by a string of bits, a node could use the
successive bits of its identity to make the successive choices. This last alternative has the



290 _ - Muitiaccess Communication  Chap. 4

advantage of limiting the number of slots required to resolve a collision, since each pair
of nodes must differ in at least one bit of their identifiers. All of these alternatives have
the common property that the set of colliding nodes is split into subsets, one of which.
transmits in the next slot. If the collision is not resolved (e.g., if'each colliding node is -
in the same subset), then a further splitting into subsets takes place. We call algorithms
of this type splitting algorithms. In the subsequent devélopment of these algorithms,
we assume a slottéd channel, Poisson arrivals, collisions -or perfect reception, (0, l,€)
immediate fecdback, retransmission of collisions, and an infinite set of nodes (i.e., the
assumptions 1 to 6b of Section 4.2.1). ‘ '

43.1 Tree Algorithms

The first splitting algonithms were algorithms with a tree structure ([Cap77], [TsM78],
and [Hay76]). When a collision occurs, say in the kb glot, all nodes not invoived in the
collision go into a waiting mode, and all those involved in the collision split into two
subsets (e.g., by each flipping a coin). The first subset transmits in slot k -+ 1, and if
that slot is idle or successful, the second subset transmits in slot k + 2 (see Fig. 4.9).
Alternatively, if another collision occurs in slot % + 1, the first of the two subsets splits
again, and the second subset waits for the resolution of that collision. o

The rooted binary tree structure in Fig. 4.9 represents a particular pattern of idles,
successes. and collisions resulting from such a sequence of splittings. S represents the

Slot Xmit Set Waiting Sets Fueedback

i | S - ]
2 L R ]

3 LL . LR, R 1

A4 LR R e

- B LRL LRR, R 0
6 LRR R ' e

7 LRRL " LRRR,R 1

8 LRAR ‘R 1

) R : - 0

‘Figure 49 Tree algorithm. After a collision, all new arrivals wait and all nodes in-
vql_yed in the collision divide info subsets. Each successive collision in @ subset causes
that subset 10 again split into smaller subsets while other nodes wait.



Sec. 43 Spliting Algorithms 291

set of packets in the original collision. and I, (left) and R (right) represent the two
subsets that .S splits into. Similarly, LL and LR represent the two subsets that L~
splits into after I, generates a coliision, Each vertex in the tree corresponds to a subset
(perhaps empty) of backlogged packets. Vertices whose subsets contain two or more
packets have two upward branches corresponding to the splitting of the subset into two
new subsets: vertices corresponding to subsets with 0 or | packet are leaf vertices of
the tree, o '

The set of packets corresporniding to the root veriex S is transmitted first, and
after the transmission of the subset corresponding to any nonleaf vertex, the subset
comresponding to the vertex on the left branch, and all of its descendant subsets, are
transmitted before the subsets of the right branch. Given the immediate feedback we
have assumed, it should be clear that each node, in principle, can construct this tree as
the 0, 1, e feedback occurs; each node can keep track of its own subset in that trée, and
thus each node can determine when to transmit its own backlogged packet.

The transmission order above corresponds to that of a stack. When a collision
occurs, the subset involved is split, and each resulting subset is pushed on the stack (i.e.,
cach stack element is a subset of nodes); then the subset at the head of the stack (i.e., the
most recent subset pushed on the stack) is removed from the stack and transmitted. The
list, from left to right, of waiting subsets in Fig. 4.9 corresponds to the stack elements
- Starting at the head for the given slot. Note that a node with a backlogged packet can
keep track of when to transmit by a counter determining the position of the packet’s
current subset on the stack. When the packet is involved in a collision, the counter is
set to 0 or 1, coresponding to which subset the packet is placed in. When the counter
~ is 0, the packet is transmitted, and if the counter is nonzero, it is incremented by 1 for
each collision and decremented by | for each success or idle.

One problem with this tree_glgorithm is what to do with the new packet arrivals
that come in while a coliision is being resolved. A collision resolution period (CRP)
is defined to be completed when a success or idle occurs and. there are no remaining
elements on the stack (i.e., at the end of slot 9 in Fig. 4.9). At this time, a new CRP
starts using the packets that arrived during the previous CRP. In the unlikely event that
a great many slots are required in the previous CRP, there will be many new waiting
~ arrivals, and these will collide and continue to collide until the subsets get small enough
in this new CRP. The solution to this problem is as follows: At the end of a CRP, the
set of nodes with new arrivals is immediately split into j subsets, where 7 is chosen so -
that the expected number of packets per subset is slightly greater than 1 (slightly greater
because of the temporary high throughput available after a collision). These nev subsets
are then placed on the stack and the new CRP starts. .

The tree algorithm is now essentially completely defined. Each node with a packet
involved in the current CRP keeps track of its position in the stack as described: above.
~ All the nodes keep track of the number of elements on the stack and the number of slots
since the end of the previous CRP. On the completion of that CRP, each node determines
the expected number of waiting new arrivals, determines the new number j of subsets,
and those nodes with waiting new arrivals randomly choose one of those j subsets and
set their counter for the corresponding stack position. '



292 ' Multiaccess Communication  Chap. 4

The maximum throughput available with this algorithm, optimized over the choice
of j as a function of expected number of waiting packets, is 0.43 packets per slot [Cap77]:
we omit any analysis since we next show some simple ways of improving this throughptt.

~ Improvements to the tree algorithm. First consider the situation in Fig. 4.10.
Here, in slots 4 and 5, a collision is followed by an idle slot; this means that all the packets
involved in the collision were assigned to the second subset. The tree algorithm would
simply transmit this second subset, generating & guaranteed collision. An improvement
results by omitting the transmission of this second subsei, splitting it into two subsets,
and transmitting the first subset. Similarly, if an idle agamn occurs, the second subset is
again split before transmission, and so forth. . o |

This improyement can be visualized in terms of & stack and implemented by ma-
. nipulating counters just like the original tree algorithm. Each node must now keep track
of an additional binary state variable that takes the value 1 if, for some i > 1, the last 4
slots contained a collision followed by i — 1 idles; otherwise, the state variable takes the
value 0. If the feedback for the current slot is 0 and the state variable has the value 1,
then the state variable maintains the value 1 and the subset on the top of the stack is split
into two subsets that are pushed onto the stack in place of the original head element.

The maximum throughput with this improvement is 0.46 packets per slot [Mas80].
In practice, this improvement has a slight problem in that if an idle slot is incorrectly
petceived by the receiver as a collision, the algorithm continues splitting indefinitely,
never making further successful transmissions. Thus, in practice, after some number h
of idle slots followed by splits, the algorithm should be modified simply to transmit the
next subset on the stack without first splitting it; if the feedback is very reliable, h can
be moderately large, whereas otherwise » should be small. ' ’

The next improvement in the tree algorithm not only improves throughput but also
greatly simplifies the analysis. Consider what happens when a collision is followed by
another collision in the tree algorithm (see slots 1 and 2 of Fig. 4.10). Let z be the
number of packets in the first collision, and let z;, and TR be the number of packets in
_the resultant subsets; thus, & = zp + TR. Assume: that, a priori, before knowing that
there is a collision, z is a Poisson random variable. Visualize splitting these x packets,
by coin flip, say. into the two subsets with =y and xp packets, respectively, before
knowing about the collision. Then a priori xz and zp are independent Poisson random
variables each with half the mean value of z. Given the two collisions, then, z, and
TR are in&cpei_ndent Poisson random variables conditional on zy + TR >2and xyp, 2 2.
The second condition implies the first, so the first can be omitted; this means that Tg.
conditionat on the feedback, is still Poisson with its original unconditional distribution.
Problem 4.17 demonstrates this result in a more computational and less abstract way.
Thus, rather. than devoting a slot to this second subset; which has an undesirably small
expected number of packets, it is better t0 regard the second subset as just another part
of the waiting new arrivals that have never been involved in a collision.
" 'When the idea above is incorporated into an actual algorithm, the first-come first-
serve (FCFS) splitting algorithm, which is the subject of the next subsection, results.
Before discussing this, we describe some variants ‘of the tree algorithm. :



Sec. 43  Splitting Algorithms | / 293

_
This collision is avoidable
(first improvement)

Xmit Set Waiting Sets Feedback

t S - ]
2 L R °
3 LL LR, R 1
4 LR R ¢
5 ‘LRL LRR, R 0
Subset 6 - LRRL LRRR, R 1
w 7 LRRA R 1
8 " (/). - -{0).
idle
Subset _ . '
‘\mhménuimd
into subsequent f:ollhk_)n resslution
Original | periods {second improvement)
coilision

Figure 4.10 Improvements in the tree algorithm. Subset LRR can be split without
first being transmitted since the feedback implies that it contains two or more. packets.
Also, subset R is better combined with new arrivals since the number of packets in it is
Poisson with an undesirably low rate,

Variants of the tree algorithm. The tree algorithm as described above requires
all nodes to monitor the channe] feedback and to keep track of when each collision
resolution pericd ends. This is a disadvantage if the receivers at nodes are turned. off
when there are no packets to send. One way to avoid this disadvantage while maintaining
the other features of the tree algorithm is to have new arrivals simply join the subset of
nodes at the head of the stack.. Thus, only currently backlogged nodes need to monitor
the channel feedback. Algorithms of this type are called unblocked stack algorithms,
indicating that new arrivals are not blocked until the end of the current collision resolution

period. In contrast, the tree algorithm is often called a blocked stack algorithm.

' With the tree algorithm, new arivals are split into a variable number of subsets
at the beginning of each collision resolution period, and then subsets are split into two
subsets after each collision. With an' unblocked stack algorithm, on the other hand, new
arrivals are constantly being added to the subset at the head of the ‘stack, and thus,
collisions involve a somewhat larger number of packets on the average. Because of

the relatively large: likelihood of three or more packets in a collision, higher maximum
throughputs can be achieved by splitting collision sets into three subsets rather than two.
Thie maximum throughput thus available for unblocked stack algorithms is 0.40 [MaF853,



