Fundamentals of Computer Networks ECE 478/578

Lecture #19: Transport Layer Instructor: Loukas Lazos Dept of Electrical and Computer Engineering University of Arizona

The Internet Architecture Application HTTP TFTP DNS FTP TCP UDP TCP UDP Net 1 Net 1 Ethernet FDDI FTP: File Transfer Protocol **TCP**: Transmission Control Protocol HTTP: Hypertext Transport Protocol UDP: User Datagram Protocol TFTP: Trivial File Transfer Protocol IP: Internet Protocol DNS: Domain Name System

End-to-End Protocols Responsible for the realization of host-to-host packet delivery Services of the transport layer Guaranteed message delivery (end-to-end) Ordered delivery Rejection of duplicate messages Messages of arbitrary length Congestion control to handle network overloading Running of multiple application processes at the same host Transport layer Network layer Network layer

Why do we need a Transport Layer?

Limitations of the network layer

Can drop messages (routers may incurr buffer overflow etc.)

Can reorder messages

Deliver duplicate copies of the same message

Limit messages to finite size (eg. IP size is limited)

Network layer is intended to hide the different technologies on a link level and provide a transparent end to end routing service

Transport layer provides end-to-end transport service to the application layer

Internet Transport Protocols

Datagram messaging service (UDP)

"Best-effort" IP end-to-end service

Reliable, in-order delivery (TCP)

Connection set-up

Discarding of corrupted packets

Retransmission of lost packets

Flow control

Congestion control (What is the difference?)

Remote Procedure Call (RPC)

Request/Reply Service

User Datagram Protocol (UDP)

Process-to-process communication service

Processes are identified based on incoming ports (sockets in Windows)

16 bits for each field yields 64K different identifiers

<IP, port> combination allows de-multiplexing at receiving host

6

Port Discovery Use well-publicized ports for different services DNS uses to port 53 Email uses port 25 HTTP uses port 80 Use one port as a "port-mapper" service Call 411 to learn the port of any other process Allows for dynamic allocation of ports to different services Allows for the assignment of ports to newly created services

Multiplexing and De-multiplexing

Host may be running multiple processes at the same time These processes

Generate multiple messages for the same host Generate multiple messages for multiple hosts

Transport layer multiplexing

Multiplex messages from multiple processes
Break down messages to segments and pass to network layer

Transport layer de-multiplexing

Reassemble messages at the receiving host and pass to the communication

10

Multiplexing and De-multiplexing Processes Processes (Nultiplexer) (Demultiplexer) IP

Control Block Module

Responsible for the management of the Control Block Table
Request for a port for a new starting process
Update the control block table

Example

State	Process ID	Port Number	Queue Number
In Use	2,569	52,010	34
In Use	4,759	52,011	
Free	=	÷	-
In Use	7,489	80	26
Free	-	-	-

Input Module

Receive UDP packet from IP layer
Look up control block table to map port
If a queue exists, push packet to the corresponding queue
If not, allocate queue for the new process

State	Process ID	Port Number	Queue Number
In Use	2,569	52,010	34
In Use	4,759	52,011	45
Free	-	-	-
In Use	7,489	80	26
Free	-	-	-

Output Module	
Receive data from the application layer Create a UDP packet and send it.	
16	
Advantages of UDP	
Control over what data is sent and when As soon as an application process writes into the socket UDP will package the data and send the packet	
No delay for connection establishment UDP just sends messages without contacting the host first Pays off when host is expecting messages anyway	
Stateless connection No allocation of buffers, parameters, sequence #s, etc. making it easier to handle many active clients at once (think of servers)	
Small packet header overhead UDP header is only eight-bytes long	
Disadvantages of UDP	
"Best effort" networking No guarantee delivery of messages to destination host, no ordered delivery	
No congestion control No adaptation to the congestion conditions of the network	
Suppresses TCP flows In case of congestion TCP flows will back off while UDP will stay on the same rate	-

Can be used as an attack method (UDP flooding attack)

Applications Utilizing UDP

Simple query protocols like Domain Name System
Delay for connection establishment is too large
Queries are small and UDP adds a small overhead (header)
Easier to have application retransmit if needed
Usually may fit within a UDP packet so no out-of-order danger

Multimedia Applications

Retransmitting lost/corrupted packets is not worthwhile By the time the packet is retransmitted, it's too late E.g., telephone calls, video conferencing, gaming Certain loss is acceptable since Voice, picture, etc are still discernable

19