Chapter 4

BELIEF UPDATING BY NETWORK
PROPAGATION

Of, would that my mind could let fall its dead ideas,
as the tree does its withered leaves.
— André Gide

This chapter deals with fusing and propagating the impact of new evidence and
beliefs through Bayesian networks so that each proposition eventually will be
assigned a certainty measure consistent with the axioms of probability theory. We
start in Section 4.1 by arguing that any viable model of human reasoning should be
able to perform this task with a self-activated propagation mechanism, i.e., with an
array of simple and autonomous processors, communicating locally via the links
provided by the network itself. The impact of each new piece of evidence is
viewed as a perturbation that propagates through the network via message-passing
between neighboring variables, with minimal external supervision. In Section 4.2
we show that these objectives can be fully realized with causal trees, i.e., Bayesian
networks in which each node has at most one parent. In Section 4.3 we extend the
result to causal polytrees, i.e., trees with arbitrary arrow orientation, and thus
allow multiple roots and multiple parents. In both cases, we identify belief param-
eters, communication messages, and updating rules to guarantee that equilibrium
will be reached in time proportional to the longest path in the network and that at
equilibrium each proposition will be accorded a belief measure equal to its poste-
rior probability, given all the available evidence. In Section 4.3.2, we illustrate
this propagation method’s evidence-pooling and credit-assignment policies with a
canonical model, where multiple causes are assumed to interact disjunctively.
Several approaches to achieving autonomous propagation in multiply connected
networks are discussed in Section 4.4, including clustering, conditioning, and sto-
chastic simulation. Finally, Section 4.5 extends the inferential repertoire of Baye-
sian networks to include answering Boolean queries under propositional con-
straints, with a special emphasis on conjunctive queries.
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144 Belief Updating By Network Propagation

4.1 AUTONOMOUS PROPAGATION AS A
COMPUTATIONAL PARADIGM

Since a fully specified Bayesian network constitutes a complete probabilistic
model of the variables in a domain (i.e., it specifies a joint distribution over the
variables), the network contains the information needed to answer all probabilistic
queries about these variables. The queries might be requests to interpret specific
input data or, if utility information is provided, requests to recommend the best
course of action. Interpretation requires instantiating a set of variables
corresponding to the input data, calculating their impact on the probabilities of
variables designated as hypotheses, and finally, selecting the most likely
combinations of these hypotheses.

In principle, once we have a joint distribution function P, the interpretation
task can be performed mechanically using purely algebraic methods. For example,
the impact of the observation X; = x; on another variable X; can be obtained from
the conditional probabilities P (x;1x;) for each value x; in the domain of X;. Using
the textbook definition
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we compute P (x;, x;) by summing the joint distribution P (xy,..., x,) over all

variables except X; and X;. The summation can be executed in any order, but
exponential savings can sometimes be realized by selecting a judicious ordering.

Network representations provide a valuable guide for making this selection.
Summing over a variable, say X, amounts to eliminating X; from the network
while maintaining the proper dependencies among remaining variables—adding
links between those neighbors of X, that were d-separated by X, and calculating
the conditional probabilities associated with the new links. Since the size of a link
matrix increases exponentially with the number of arrows that converge on a given
variable, it is important to eliminate variables in an order that minimizes the
number of converging arrows created throughout the process. Techniques for
finding a good elimination ordering have been developed in the operations
research literature [Bertelé and Brioschi 1972] and have been used for
manipulating influence diagrams [Shachter 1986] (see Chapter 6). Such
techniques do not, of course, avoid the exponential worst-case complexity of the
interpretation task (the problem is NP-hard [Rosenthal 1975; Cooper 1987]), but
they exploit the structural properties of sparse networks.

However, node elimination has several shortcomings. First, the process
requires full supervision by a monitor that must access all parts of the network and
use external computational facilities to decide, at any given stage, which variable
should be eliminated next. The use of such a global supervisor is foreign to human
reasoning because it requires faculties beyond most humans, €.g., comprehending
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the entire structure of the network and quickly diverting attention from one section
of the network to another. Our limited short-term memory, narrow range of
attention, and inability to shift rapidly between alternative lines of reasoning
suggest that our reasoning process is fairly local, progressing incrementally along
preestablished pathways. Second, elimination techniques literally cover their
tracks; they provide the final impact of a piece of evidence on a single hypothesis,
but do not calculate the impact of the evidence on the nodes eliminated in the
process. In many applications, we wish to know the updated belief of every
variable in the network. Third, and perhaps most important, the elementary steps
in the process of node elimination often have no conceptual correlates. They
create and calculate spurious dependencies among variables normally perceived to
be independent, and the dependencies are hard to explain in qualitative terms.
Finally, elimination techniques are basically sequential, and there is growing
interest in reasoning models that permit unsupervised parallelism. The interest is
motivated both by technological advances in parallel computation and by the need
to develop viable models of human reasoning. The speed and ease with which
people perform some low-level interpretive functions, such as recognizing scenes,
reading text, and even understanding stories, strongly suggest that such processes
involve a significant amount of parallelism and that most of the processing is done
at the knowledge level itself [Shastri and Feldman 1984].

4.1.1 Constraint Propagation and Rule-based
Computation

We can model such phenomena by viewing a belief network not merely as a
passive code for storing factual knowledge but also as a computational architecture
for reasoning about that knowledge. This means the links in the network should be
treated as the only mechanisms that direct and propel the flow of data through the
process of querying and updating beliefs. Accordingly, we assume that each node
in the network is given a separate processor, which maintains the parameters of
belief for the host variable and manages the communication links to and from
neighboring, conceptually related variables. The communication lines are
assumed to be open at all times, i.e., each processor may, at any time, interrogate
its neighbors and compare their parameters to its own. If the compared quantities
satisfy some local constraints, no activity takes place. However, if any constraint
is violated, the responsible node is activated and the violating parameter
corrected. This, of course, activates similar revisions at neighboring nodes and
initiates a multidirectional propagation that will continue until equilibrium is
reached.

EXAMPLE 1: To illustrate the process of constraint propagation, consider the graph
coloring problem depicted by Figure 4.1. Each node in the graph must be assigned one of
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three colors, {1, 2, 3}, in such a way that no two adjacent nodes will have identical colors.
The constraints in this problem are local; no node can assume a color seen at any of its
neighbors. A local approach would be to assign a processor to each node and have it
compare its current color to the colors of its neighbors. If equality is discovered, the
processor should choose a new color, different (if possible) from the neighbors’ colors. We
assume there is no synchronization, so all possible activation schedules could be realized.
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Figure 4.1. Demonstrating constraint propagation in the graph coloring problem.

Figure 4.1.a shows the initial state of the system: all nodes are colored 1. Figure 4.1b shows
the configuration after the nodes are activated in the order A, B, C, D: a stable solution is
established once C selects the color 2. If, instead, the activation schedule happens to be
A, C, B, D, and if C selects the color 3, a deadlock occurs (Figure 4.1¢): B cannot find a
color different from all its neighbors. A way out of such deadlock is to instruct each
processor to change its color arbitrarily if no better one can be found. Indeed, if B changes
its color to 2 (temporarily conflicting with A, as in Figure 4.1d), it forces A to choose the
color 3, thus realizing a global solution (Figure 4.1¢).

Even if a global solution exists, there is no guarantee, in general, that it will be found by
repeated local relaxations. However, if the escape from deadlock is totally random, the
probability of reaching a solution within a given time ¢ approaches 1 as ¢ increases. Note
also that if the node activation is both parallel and synchronous, the system can fall into an
indefinite dynamic loop without reaching a solution. For example, starting with the state of
Figure 4.1a, all processors may simultaneously choose the color 2, then 3, etc. Such
pathological behavior will not occur in the networks that we shall deal with.

One of the main reasons for adopting this distributed computation paradigm in
evidential reasoning tasks is that it automatically exploits the independencies
embodied in the network, via subtask decomposition, to gain a substantial
reduction in complexity. For example, if the Markov neighbors of some variable X
have successfully computed their combined distribution function, X can compute
its own distribution without interacting with any variable outside its neighborhood
(see Eq. (3.12)). Moreover, if the network has a tree structure, then X can compute
its distribution by consulting each of its neighbors separately. If any of X’s
neighbors undergo change, X updates its own distribution and reports the update to
the other neighbors, and so on until, at the network’s periphery, we meet evidential
variables whose probabilities are predetermined and the process halts.
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The second reason to adopt this distributed paradigm is that it leads to a
"transparent” revision process, in which the intermediate steps can be given an
intuitively meaningful interpretation. Because a distributed process allows each
computational step to obtain input only from neighboring, semantically related
variables, and because the activation of these steps proceeds along semantically
familiar pathways, people find it easy to give meaningful interpretation to the
individual steps and thus gain confidence in the final result. It is also possible to
generate qualitative justifications mechanically by tracing the sequence of
operations along the activated pathways and giving them causal or diagnostic
interpretations using appropriate verbal expressions.

The ability to update beliefs by an autonomous propagation mechanism also
has a profound effect on sequential implementations of evidential reasoning. Of
course, when this architecture is simulated on sequential machines, the notion of
autonomous processors working simultaneously is only a metaphor, but it signifies
the complete separation of the stored knowledge from the control mechanism.
This separation is the proclaimed, if rarely achieved, goal of rule-based systems. It
guarantees the utmost flexibility for a sequential controller; the computations can
be performed in any order, with no need to remember or verify which parts of the
network have already been updated. Thus, belief updating may be activated by
changes occurring in logically related propositions (spreading activation ), by
requests for evidence arriving from a central supervisor (goal-directed activation),
by a predetermined schedule, or entirely at random. The communication and
interaction among individual processors can be simulated using a blackboard
architecture {Lesser and Erman 1977], where each proposition is designated
specific areas of memory to access and modify.

Finally, the uniformity of this propagation scheme makes it easy to formulate
in object-oriented languages: the nodes are objects of the same generic type, and
the belief parameters are the messages by which interacting objects communicate.
The programmer need only specify how a single object reacts to changes occurring
at its neighbors; he need not provide timing information or say where to store
partial results.

Constraint propagation mechanisms have a special appeal for Al researchers
because they are similar in many respects to logical inference rules. We already
have seen that an inference rule of the form "If premise A, then action B"
constitutes a very attractive unit of computation for three reasons:

1. The triggering mechanism is local, i.e., it grants a license to initiate the
action whenever the premise A is true in the knowledge base K,
regardless of the other information that K contains.

2. The action is computationally simple and normally involves only a
minor adjustment in the knowledge base.

3. Both the triggering mechanism and the action are conceptually
meaningful and are therefore easy to program, modify, and explain.
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Almost identical features hold in the constraint propagation formalism. Each
processor receives a permanent license to act whenever a certain condition
develops among its neighbors. The action is simple, since it involves only local
perturbation of the processor’s parameters. Both the activation and the action are
meaningful because they engage semantically related propositions. Thus,
whenever a problem can be solved by a constraint propagation mechanism, it is
also easy to formulate in a pure production-rule formalism.

4.1.2 Why Probabilistic Reasoning Seems
to Resist Propagation

While constraint propagation mechanisms have been essential to many Al
applications, e.g., vision [Rosenfeld, Hummel, and Zucker 1976; Waltz 1972] and
truth maintenance [McAllester 1980], their use in evidential reasoning,
surprisingly, has been limited to non-Bayesian formalisms [Lowrance 1982;
Quinlan 1983; Shastri and Feldman 1984]. There have been several reasons for
this, all based on the essential difference between the probabilistic statement
P(A|B) = p and the logical rule B — A (see Sections 1.1.4, 1.3.1, and 2.3.1).

First, the conditional probabilities characterizing the links in the network do
not seem to impose definitive constraints on the probabilities that can be assigned
to the nodes. Consider a pair of nodes A and B linked by an arrow B — A and
quantified by the conditional probabilities P(a|b) and P(a|—b). The quantifier
P(al|b) restricts the belief accorded to a only in a very special set of
circumstances, namely, when b is known with absolute certainty to be true and
when no other evidential data is available. Normally, all internal nodes in the
network will be subject to some uncertainty. Thus, if processor A inspects its
neighbor B and finds it in a state of uncertainty with P(b) < 1, it still cannot
proceed with a definite action on P(a). A natural recourse would be to compute
the weighted average

P(a) = P(alb)P (b) + P(al=b) P (=b).

After the arrival of some evidence ¢, however, the posterior distributions A and B
are no longer governed by P(a | b) but rather by P(a ! b, e), via

P(ale)y = P(alb,e) P(ble) + P(al—b, e) P(—=ble),

which may be a totally different relationship. (To take an extreme example, if e
fully confirms or denies a, the overall probability of a becomes totally insensitive
to P(alb).) The result is that any arbitrary assignment of beliefs to the
propositions a and b can be consistent with the value of P(a |b) that was initially
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assigned to the link connecting them; consequently, among these parameters, no
violation of a constraint can be detected locally.

Second, the disparity between P(a | b, e) and P(a |b) suggests that once a new
piece of evidence is introduced, the original weights on the link no longer retain
their intended meaning; hence, they should not remain fixed but should undergo
constant adjustment as new evidence arrives. This requires enormous
computational overhead and an external unit to perform the adjustment, so it
defeats the whole purpose of local propagation.

Finally, the presence of both top-down (predictive) and bottom-up (diagnostic)
inferences in evidential reasoning has caused apprehensions that pathological
instability, deadlock, and circular reasoning will develop once we allow the
propagation process to run its course unsupervised [Lowrance 1982]. Indeed, if a
stronger belief in a given hypothesis means a greater expectation of the occurrence
of its various manifestations, and if, in turn, a greater certainty in the occurrence of
these manifestations adds further credence to the hypothesis, how can one avoid
infinite updating loops when the processors responsible for these propositions
begin to communicate with one another?

EXAMPLE 2: You spread a rumor about person X to your neighbor N,. A few days
later, you hear the same rumor from N,. Should you increase your belief in the rumor now
that N, acknowledges it, or should you determine first whether N, heard it from another
source besides you? It is clear that if you were N ’s only source of information, your belief
should not change, but if N, independently confirmed the validity of the rumor, you have
good reason to increase your belief in it.

Similar considerations apply to communicating processors that represent
interdependent propositions. Imagine that a processor F, representing the event
Fire, communicates asynchronously with a second processor S, representing the
event Smoke. At time t;, some evidence (e.g., the distant sound of a fire engine)
gives a slight confirmation to F, thus causing the probability of Fire to increase
from P(F) to P,(F). At a later time, t,, processor S may decide to interrogate F;
upon finding P(F), it revises the probability of Smoke from P(S) to P»(S) in
natural anticipation of smoke. Still later, at 3, processor F is activated, and upon
finding an increased belief P,(S) in Smoke, it increases P (F) to an even higher
value, P5(F). This feedback process may continue indefinitely, the two processors
drawing steady mutual reinforcement void of any empirical basis, until eventually
the two propositions, Fire and Smoke, appear to be firmly believed.

Such dangers are not unique to probabilistic reasoning, but should be
considered in any hierarchical model of cognition where mutual reinforcement
takes place between lower and higher levels of processing, e.g., connectionist
models of reading [Rumelhart and McClelland 1982] and language production
[Dell 1985].



150 Belief Updating By Network Propagation

To prevent these phenomena, we need a mechanism to keep track of the
sources of belief, so that evidence is not counted twice and so that the impact of
one piece of evidence is not fed back to its source. Unfortunately, source
identification requires an overview of the entire network, and the question arises
whether it can be represented and adjusted locally as an integral part of the
propagation process.

This chapter demonstrates that in a large class of networks, coherent and stable
probabilistic reasoning can be accomplished by local propagation mechanisms,
keeping the weights on the links constant throughout the process. This is done by
characterizing the belief in a proposition by a list of parameters, each representing
the degree of support the host proposition obtains from one of its neighbors. In the
next two sections we show that maintaining such a record of the sources of belief
facilitates local updating of beliefs, and that the network relaxes to a stable
equilibrium, consistent with the axioms of probability theory, in time proportional
to the network diameter. Such a record of parameters is also postulated as a
mechanism that permits people to retrace rationales and assemble explanations for
currently held beliefs.

4.2 BELIEF PROPAGATION IN CAUSAL TREES

4.2.1 Notation

We shall first consider tree-structured causal networks, i.e., those in which every
node except the one called root has exactly one incoming link. We allow each
node to represent a multi-valued variable, comprising a collection of mutually
exclusive hypotheses (e.g., the identity of an organism: Org;, Org,, ..} or
observations (e.g., a patient’s temperature: High, Medium, Low). Let variables be
labeled by capital letters (A, B,..., X, Y, Z) and their possible values by the
corresponding lowercase letters (a, b,..., x, ¥, z). In dealing with propositional
variables, the symbols + and — will be used to denote the affirmation and denial,
respectively, of propositions. For example, +a stands for A = TRUE, and —a
stands for A = FALSE. Each directed link X — Y is quantified by a fixed
conditional probability matrix M, in which the (x, ¥) entry is given by

M, AP(YIx)AP(Y =yIX =x) (4.1)
-y
l
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Normally, the directionality of the arrow designates X as the set of causal
hypotheses and Y as the set of consequences or manifestations of these hypotheses.

EXAMPLE 3: In a certain trial there are three suspects, one of whom has definitely
committed a murder. The murder weapon, showing some fingerprints, was later found by
police. Let X identify the last user of the weapon, namely, the killer. Let Y identify the last
holder of the weapon, i.e., the person whose fingerprints were left on the weapon, and let Z
represent the possible readings that may be obtained in a fingerprint laboratory.

The relations between these three variables normally would be expressed by the chain
X—Y—Z; X generates expectations about Y, and Y generates expectations about Z, but X
has no influence on Z once we know the value of Y.

To represent the commonsense knowledge that the killer is normally the last person to
hold the weapon, we use a 3 x 3 conditional probability matrix:

080ifv=y xy=12,3
M, .=Pyly)= (4.2)
. 0.10ifxv#y x,y=1,2,3.

To represent the reliability of the laboratory test, we use a matrix M., = P(z | y), satisfying

YPly)y=1 fory=1,2,3.

Each entry in this matrix represents an if-then rule of the following type: "If the fingerprint
is of Suspect v, then expect a reading of type z, with certainty P(z Iy)."

Note that this convention is at variance with that used in many expert systems
(e.g., MYCIN), where rules point from evidence to hypothesis (e.g., if symptom,
then disease), thus denoting a flow of mental inference. By contrast, the arrows in
Bayesian networks point from causes to effects, or from conditions to
consequences, thus denoting a flow of constraints attributed to the physical world.
The reason for this choice is that people often prefer to encode experiential
knowledge in causal schemata [Tversky and Kahneman 1977], and as a
consequence, rules expressed in causal form are assessed more reliably. ¥

Incoming information may be of two types: specific evidence or virtual
evidence. Specific evidence corresponds to direct observations that affect the
belief in some variables in the network. Virtual evidence corresponds to
judgments based on undisclosed observations that are outside the network but have

+ It appears that frames used to index human memory by and large are organized to evoke
expectations vather than explanations. The reason could be because expectation-evoking frames
normally consist of more stable relationships. For example, P(ylz) in Example 3 would vary
drastically with the proportion of people who have type = fingerprints. P(zly), on the other hand.
depends merely on the similarity between the type of fingerprint that Suspect v has and the readings
observed in the lab; it is perceived to be a stable local property of the laboratory procedure,
independent of other information regarding Suspect y.
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bearing on variables in the network. Such evidence is modeled by dummy nodes
representing the undisclosed observations, connected by unquantified (dummy)
links to the variables affected by the observations. These links will carry
information one way only, from the evidence to the variables affected by it.

For example, if it is impractical for the fingerprint laboratory to disclose all
possible readings (in variable Z) or if the laboratory chose to base its finding on
human judgment, Z will be represented by a dummy node, and the link ¥ —Z will
specify the degree to which each suspect is likely to bear the fingerprint pattern
examined. For example, the laboratory examiner may issue a report in the form of
a list (0.80, 0.60, 0.50), stating that she is 80% sure that the fingerprint belongs to
Suspect 1, 60% sure that it belongs to Suspect 2, and 50% sure that it belongs to
Suspect 3. If the examiner was totally unbiased before the test, such a profile of
belief can be established only if the likelihood ratio is

P(Zobserved 1y = 1) : P(Zoserved _.% =2) 1 P(Zopserved |y = 3)=8:6:5,

which will be our standard way to characterize the impact of virtual evidence (see
Sections 2.2.2 and 2.3.3). Because these numbers need not sum to unity, each
judgment can be formed independently of the others—each suspect’s fingerprints
can be compared separately with those found on the weapon.

All incoming evidence, both specific and virtual, will be denoted by e and will
be regarded as emanating from a set E of instantiated variables, i.e., variables
whose values are known. For example, if the laboratory examination is the only
evidence available in Example 3, we shall write E = {Z} and e = {Z = 2 jp5erveq ) -
If several facts become known, say, A = TRUE, B = FALSE and X =x, then
E=1{A B, X}ande = {+a, —b, X =x}.

For the sake of clarity, we will distinguish between the fixed conditional
probabilities that label the links, e.g., P(y1x), and the dynamic values of the
updated node probabilities, e.g., P(x le). The latter will be denoted by BEL(x),
which reflects the overall belief accorded to proposition X = x by all evidence so
far received. Thus,

BEL(x)AP(xle),

where e is the value combination of all instantiated variables.

Since we will be dealing with discrete variables, functions such as Ax), P(x),
and BEL(x) can be regarded as lists, or vectors, with each component
corresponding to a different value of X. For example, if the domain of X is
Dy = {Hot, Medium, Cold}, we can write

BEL(x) = (BEL(X = Hot), BEL(X = Medium), BEL(X = Cold))
=(0.1,0.2,0.7).
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The product f(x) g(x) of two such vectors will stand for term-by-term
multiplication, e.g.,

(1,2,3)(3,2, 1) =(1x3,2x2,3x1)=(3,4,3).

Inner products (or dot products) will be denoted by a dot s, e.g.,
F@)eg(x)=(1,2,3)¢(3,2, 1) =1%x3+2x2+3x1=10.

The dot symbol « will also be used to indicate matrix products, e.g.,

f&)Y e My A flx) My

The summation will always be taken over the repeated index, thus eliminating the
need for transposing matrices or distinguishing between row and column vectors.
We shall use the symbol o to denote a normalizing constant, e.g.,

a(l, 1, 3) =(0.2, 0.2, 0.6),
and the symbol [ to denote an arbitrary constant, e.g.,
KBf (x)=B fx) and
aff (v) = of (x).
A vector of 1s will be written 1; for example,

BEL(x)=0al1 =0o(1, 1, 1, 1) = (0.25, 0.25, 0.25, 0.25) .

4.2.2 Propagation in Chains

Consider the simplest of all tree-structured networks, namely, a network consisting
of two nodes and a single link, X — Y. If evidence e= {Y =y} Is observed, then
from Bayes’ Rule, the belief distribution of X is given by

BEL(x)=P(xle)= o P(x) Ax), (4.3)

where o = [P(e)]"!, P(x) is the prior probability of X, and A(x) is the likelihood
vector

AMx)y=Plelx)=P(Y =yix)y=M,,,. 4.4)

In short, A(x) is simply the v's column of the link matrix M, as in Eq. (4.1). Since
this matrix is stored at node Y, A(x) can be computed at ¥ and transmitted as a
message to X, enabling X to compute its belief distribution BEL(x).
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If Y is not observed directly but is supported by indirect observation e = {Z =z}
of a descendant Z of Y, we have the chain X — Y — Z, and we can still write

BEL(x)AP(xle) = o P(x) Mx) .

The likelihood vector A(x) can no longer be directly obtained from the matrix
M., however, but must reflect the matrix M., as well. Conditioning and
summing on the values of Y, we can write

Ax)=Plelx)y=Y Pely, x) P(y lx) =Y P(ely) P(y Ix)

y y

= \Kw Ix ® PQY (4.5)

using the fact that Y separates X from Z. Thus, we have shown that node X can still
calculate its likelihood vector A(x) if it somehow gains access to the vector A(y).

Generalizing to the chain of Figure 4.2, every node can calculate the correct
current value of its A vector if it learns the correct A vector of its successor.

\S_,: \S.«_: >\N.<_., \Sn_.‘_
P(t) ¢®|T\v@l&?+\ %R@'T\@!v - — Evidence €
A1) ) Ax) A A(z)

Figure 4.2. Each node in a causal chain can calculate its A from the ) of its successor.

Since the chain ends with an observed variable whose value is determined
externally, the A vector of all variables can be determined recursively. If the chain
ends with an unobserved variable Z and we set A (z) = 1 for all z, Egs. (4.3) and
(4.5) are still valid, because every variable will obtain A =1 and all belief
distributions will coincide with the prior distributions. Assuming that each node
constantly inspects the A of its child and updates its own A accordingly, we are
guaranteed that every variable along the chain will obtain its correct A, properly
reflecting any changes that might have occurred in e. This updating process is
analogous to the way soldiers are counted.
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EXAMPLE 4: A platoon of soldiers is marching at night in enemy territory. The leader
wants to know how many soldiers remain under his command. He sends a "count” signal to
the soldier behind him. This person, in turn, looks behind, and if someone is there, he
passes on the "count” signal; if no one is left behind him, he returns the signal "1" to the
soldier in front of him. The soldier in front receives the "1," adds 1 (for himself) and sends
"2" to the soldier in front of him, and so on. The leader eventually receives the correct
count. (See Figure 4.3.) In fact, the leader need not be at the head of the platoon. He can
initiate a "count” command to both his front and his back, wait for responses from both
sides, and add the values received (see Figure 4.4).

Leader 4 3 2 1

count count count count

Figure 4.3. Distributed soldier-counting.

1 2 Leader 3 2 1
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count count count count count

Figure 4.4. Distributed soldier-counting with leader in line.

This common procedure suffers because the leader may not be aware of any missing
soldiers until he decides to count, and even then the count gets back to him only after
communication delays to and from the end of the line. This problem can be overcome by
instructing each soldier to constantly update and communicate the messages without
waiting for the "count” signal, or more efficiently, to initiate communication as soon as a
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change is seen in the immediate environment. Thus, no communication takes place under
normal conditions, but when any soldier suddenly finds himself at either the front or the end
of the line, he will initiate a message-passing process that propagates toward the leader and
eventually terminates at the leader (who is now passive) with the correct count (see Figure
4.5).

initiate 1 2 Leader 3 2 1 initiate
@) @] O O O
d \\m ) N i i) 3
~ \-T N —> N .s|v\/ — /./v 7
<« inspect inspect inspect inspect inspect

Figure 4.5. Soldier-counting initiated by changes at endpoints.

To draw the analogy closer to belief updating, let’s remove the leader and force every
soldier to be constantly aware of the current total count. In such a system, the messages,
instead of stopping at any particular individual, should continue to propagate toward the
periphery; the forward-moving messages should propagate all the way to the front of the
line, and the backward-moving messages should propagate to the end of the line. Every
soldier follows the same rule: receive a count from the person behind, add 1, and transmit
the result to the person in front; receive a count from the person in front, add 1, and transmit
to the one behind (see Figure 4.6). Note that each soldier must maintain and communicate
two separate parameters, the back count and the front count; the overall count (the sum of
the two) is not a message that can sustain the propagation.

TOSes

Figure 4.6. Leaderless soldier-counting using dual-parameter communication.
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BIDIRECTIONAL PROPAGATION

The need for dual-parameter communication also exists in belief updating, where
new evidence can emerge from both a descendant of a node and its ancestor. For
example, in the chain of Figure 4.7, variables are instantiated at both the head and
the tail of the chain, and we may wish to calculate BEL(x) as a function of the
values, €' and ¢, that these variables take.¥

=D —

Figure 4.7. A causal chain with evidential data at its head (€ ) and tail (€").

In Eq. (4.3), AM(x) was defined by P(elx), e being the total evidence available.
We now find it more convenient to handle the impact of ¢ and €" by two separate
vectors,

Ax) =P(e 1x) (4.6a)

and
nx) =P(xle). (4.6b)

Expressing the total belief distribution BEL(x) in terms of A(x) and m(x), with X
separating €' from ¢, we have

BEL(x)AP(xlet, €)=0P(€ |x, e") P(xle") = aP(€ 1x) P(xle")
= M) T)
which is identical to Eq. (4.3) with nt(x) replacing P (x).

To illustrate how information about 7t(x) propagates from e* down the chain,
let us condition Eq. (4.6b) on the values of the parent variable U:

nx)=Pxle)y =Y Pxlu, e) P(ule’).

Since U separates X from e*, we obtain

) =Y Px b)) m@u) = m(u) « My, .

u

(4.7)

+ €' might represent the background knowledge one has about 7. in which case the prior probability
P(#) will be identical to P(rle").
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We see that the forward propagation of ©’s parameters is similar to the backward
propagation of A’s parameters; both involve vector multiplication by the
appropriate link matrix. Each node can now compute its own 7 and A after
obtaining the 7 of its parent and the A of its child. (See Figure 4.8.)

() (U ) XY ) n(y)
—> —> — —
«— «— «— «
M) Au) Ax) Ay) Az)

Figure 4.8. Belief calculation using bidirected message passing in causal chains.

EXAMPLE 5: Referring to the trial story of Example 3, let e” = (Z = z} represent the
experience of examining the fingerprints left on the murder weapon, and let ¢* stand for all
other testimony heard in the trial. So, m(x) = P(x le*) stands for our prior certainty that the
x-th suspect is the killer, m(y) = P(y |e*) stands for our prior certainty (before examining
the fingerprints) that the y-th suspect was the last person to hold the weapon, and
My) = P(e"ly) represents the report issued by the fingerprint laboratory. Taking
m(x) = (0.8, 0.1, 0.1) and using the matrix of Eq. (4.2), we get

0.8 0.1 0.1
n(y) = (0.8, 0.1,0.1)» |0.1 0.8 0.1| = (0.66, 0.17, 0.17) .
0.1 0.1 0.8

Prior to inspection of the fingerprints, all As are unit vectors 1 and the message profile on
the chain is as shown in Figure 4.9.

X ¥ N
>\~., 1y o
. . . [ T | | - : | B
::iv Tx) BEL(x) Alx) T 08 0.1 0.1 7ir) wmm mmh%uv »M.i nc;,ﬁ ,
¢ OB O8I | (e o 0= ol o | e
B «— - . - o
o1l Lo [ [Fooy LT OLO8 Fes[o17] Loag] [1f (Mt o

Figure 4.9. [nitial beliefs and messages in Example 5.
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Now assume that a laboratory report arrives, summarized by A(y) = (0.8, 0.6, 0.5).
Node Y updates its belief to read

BEL(y) = o. My) T(y) = (0.8, 0.6, 0.5) (0.66, 0.17, 0.17)
=(0.738, 0.143, 0.119)

and delivers to X its A(y) vector. Upon receiving this message, node X computes its new
A(x) vector,

0.8 0.1 0.1 0.8 0.75
M) =M, s My) = B [0.1 08 01| « |06 =B [061] .
0.1 0.1 0.8 0.5 0.54

and its new belief distribution becomes
BEL(x) = o0 A(x) T(x) = 0(0.75, 0.61, 0.54) (0.8, 0.1, 0.1)

(0.840, 0.085, 0.076) .

The messages are distributed as in Figure 4.10.

Y zZ
ey | BEL(x) A(x) ) BELOOAY)| .
®+.|v 0.8] [ 0.840]( 0.75 0.66] 70.73810.8] ” , Owwn_éu:o:
][ 0-1}{ 0.085, 0.61 017 | 0.142]| 06— =€ =l4=
1 0.1 0.0qo 0.54 0.171 1 0.119 O.m. v(C_vr _i

Figure 4.10. Beliefs and messages in Example 5, after obtaining the laboratory report

A
Now assume that Suspect | produces a very strong alibi, which (discounting fingerprint

information) reduces the odds that he could have committed the crime from 0.80 to 0.28,
thus yielding a revised prior probability of

w(x) = (0.28, 0.36, 0.36) .

This change propagates toward Y and results in a revised m(y):

080
n(v) =m(x) e M, =(0.28.0.36, 0.36)« |0.1 O.
. 0.1 0.
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Each processor can now compute the revised total belief of its variable, taking into account
the evidential impact of the fingerprint findings: -

BEL(x) = om(x)A(x) = 0t(0.28, 0.36, 0.36) (0.75, 0.61, 0.54)
a(0.210, 0.220. 0.194)

(0.337, 0.352, 0.311) ,
0(0.30, 0.35. 0.35) (0.80, 0.60, 0.50)
0(0.240, 0.210, 0.175)
= (0.384, 0.336, 0.280) .

I

BEL(y) = om(y)Ay)

Thus, Suspect 2 now becomes the strongest candidate for being the killer (with
P(X =2) = 0.349), though Suspect 1 is still most likely to be the owner of the fingerprint
(with P(Y = 1) = 0.384). The final message distribution is shown in Figure 4.11.

) BEL(x) M) Voo T) BEL(y) M) . )
anw. 0.28] [0.343] [ 0.75]| *)! m.w w.m_w M# _ ald 0,301 [0.384][ 0.8] ” | | Observation
e _ 1036|0349 | 061 == 01010 ——110.35! | 0.336]| 0.6[==" € =(Z=z}

036/ | 0308] | 0.54] X0, 0 033 | 0380]L 0.8 Ko~ -

Figure 4.11. Beliefs and messages in Example 5, incorporating alibi information 7(x).

Note how the separation between causal and evidential support (i.e., between
the ms and the As) prevents feedback, circular reasoning, and indefinite relaxations
of the type discussed in Section 4.1.1. Suspect 1’s alibi renders him less likely (by
a factor of 0.384/0.738) to be the owner of the incriminating fingerprints, but this
reduction is not fed back to further influence his likelihood of being the killer (this
would amount to counting the alibi information twice) because A(x) and A(v) are
unaffected by changes occurring in m(x). Keeping these two modes of support
orthogonal to each other ensures stable updating in a single pass.

The local computations performed by each processor are essentially constraint
relaxations of the type discussed in Example 1, with two additional features: the
constraints are equalities, and they can always be satisfied locally. If the state of
each processor is defined by its associated m and A vectors, then the updating
procedure can be written as a collection of local inference rules, identical in form
and spirit to those used in constraint relaxation and logical deduction. For
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example, assuming the content of © and A is stored in two registers, called IT and
A, the behavior of processor X in Figure 4.8 is specified by three inference rules:

If X oY)y

¥lx

and A(Y) =A(y) then A(X)=A()-M,,, (4.8)
If (U—X)y, and[IU)=nw) then TI(X) =M., -mu), 4.9)
If AX)=Ax)and II(X) = n(x)  then BEL(x) = 0A(x) (x). (4.10)

The first rule, for instance, reads:

If the rule "If X = x then ¥ = y" was assigned the certainty M, ,, and the current
content of A(Y) is A(y), then put 3, A(y) M, |, into A(X).
-

Egs. (4.8) through (4.10) are depicted in Figure 4.12. The reasons for
formulating simple updating equations like Eqs. (4.5) and (4.7) as inference rules
is to demonstrate their similarity to logical deductions. Like deductive rules of
inference, they can be invoked at any time and in any order; postponing the
activation of a rule or invoking it repeatedly may delay equilibrium but will not
alter the final result. Like deductive rules of inference, the actions specified by
Egs. (4.8) through (4.10) are determined solely by the premises, independent of the
rest of the database. But these rules, unlike deductive rules, are non-monotonic in
the sense that the conclusions (e.g., the belief measures BEL(x)) may undergo
changes as new evidence arrives. Thus, Polya’s aspirations of formulating patterns
of plausible reasoning as rules of inference (see Section 2.3.1) are partially
realized, and the pitfalls of his original patterns avoided, by distinguishing causal
supports () from evidential supports (A). Knowing that a neighboring proposition
Y =y has become "more credible" or "less credible” is insufficient to trigger an
action in X; we must first ascertain whether it is A(y) or m(y) that has changed.
This distinction is expressed in logical terms in Section 10.3.

The scheme described in Figures 4.9 through 4.12 requires that each processor
gain access to matrices of both incoming and outgoing links. This may be
inconvenient both for hardware implementation and rule-based programming. An
alternative scheme, depicted in Figure 4.13, requires that each processor store just
one matrix corresponding to the incoming link. Here, each processor receives as
input the 7 of its parent and the A of its own variable. Upon activation, each
processor computes its own T (to be delivered to its child) and the A of its parent
(to be delivered to the parent). This convention will be used throughout the rest of
this chapter because it closely reflects the basic construction of Bayesian networks,
whereby each node is characterized by its relation to its parents.
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X

i 0 )
BEL (x)

W M) W)

Figure 4.12. Structure of individual processor, containing two link matrices.

X
\
(1) (x) nx)
> —_—
BEL (x)
P P
A M) A

Figure 4.13. Structure of individual processor, containing a single link matrix.

4.2.3 Propagation in Trees

We now examine a general tree-structured network where a node might have
several children and one parent. The propagation scheme in trees is very similar to
that of chains, with two distinctions: Each node must combine the impacts of A-
messages obtained from several children, and each node should distribute a
separate T-message to each of its children.
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Figure 4.14. Fragment of causal tree. showing incoming (solid arrows) and outgoing
(broken arrows) messages at node X.

Consider the tree fragment depicted in Figure 4.14. The belief in the various
values of X depends on two distinct sets of evidence: evidence from the sub-tree
rooted at X, and evidence from the rest of the tree. But the influence of the latter
source of information on X is completely summarized by its effect on U, since U
separates X from all variables except X ’s descendants. More formally, letting e
stand for the evidence contained in the tree rooted at X and letting €§ stand for the
evidence contained in the rest of the network, we have

Pxlu, ex) =Pxlu). (4.11)
This also leads to the usual conditional independence among siblings,

Px,viu)=Pxlu)P(vlu), (4.12)

since the proposition V = v is part of ey.

DATA FUSION

Assume we wish to find the belief induced on X by some evidence e = ex U ex.
Bayes’ Rule, together with Eq. (4.11), yields the product rule

BEL(x) =P(xle}, &) = o P(exley, x) P(xlef)
= Pex|x) P(xlel), (4.13)

where oL = [P(ey 1 €})]™! is a normalizing constant.



164 Belief Updating By Network Propagation

Eq. (4.13) provides an interesting generalization of the celebrated Bayes
product formula,

Pxle)=0P(elx) P(x), 4.14)

by identifying a surrogate—P (x | e} )—for the prior probability term P(x)—with
every intermediate node in the tree. In recursive Bayesian updating (see Section
2.1.4), the posterior probability can be used as a new prior, relative to the next item
of evidence, only when the items of evidence are conditionally independent, given
the updated variable X. Such recursive updating cannot be applied to networks
because only variables that are separated from each other by X are conditionally
independent. In general, it is not permissible to use the total posterior belief,
updated by Eq. (4.13), as a new multiplicative prior for the calculation. Eq. (4.13)
is significant because it shows that a product rule analogous to Eq. (4.14) can be
applied recursively to any node in the tree, even when the observations are not
conditionally independent, but the recursive, multiplicative role of the prior
probability has been taken over by that portion of belief contributed by evidence
from the sub-tree above the updated variable, excluding the data collected from its
descendants. The root is the only node that requires a prior probability estimation,
and since it has no network above it, e}, should be interpreted as the background
knowledge remaining unexplicated.

Eq. (4.13) suggests that the probability distribution of every variable in the tree
can be computed if the node corresponding to that variable contains the vectors

AX) = Plex ' x) 4.15)
and

n(x) =P(xlex). (4.16)

Here, m(x) represents the causal or predictive support attributed to the assertion
"X = x" by all non-descendants of X, mediated by X’s parent, and A(x) represents
the diagnostic or refrospective support that "X = x" receives from X’s descendants.
The total strength of belief in "X = x" can be obtained by fusing these two supports
via the product

BEL(x) = oA(x) m(x). (4.17)

To see how information from several descendants fuses at node X, we partition the
data set ey in Eq. (4.15) into disjoint subsets, one for each child of X. Referring to
Figure 4.14, for example, the tree rooted at X can be partitioned into the root, X,
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and two sub-trees, one rooted at Y and the other at Z. Thus, if X itself is not
instantiated, we can write ey = €y U €7, and since X separates its children, we have

Alx) = P(ex lx)
= P(ey, €71x)
=P(ey 1 x)P(ez1x). (4.18)

So A(x) can be formed as a product of terms such as P(eylx), if these terms are
delivered to X as messages from its children. Denoting these messages by
subscripted A’s,

Ay(x) = P(eylx) (4.19a)
and
Az(x) = Pezlx) . (4.19b)
we have the product rule:
M) = Ay () Az (x) . (4.20)

This product rule also applies when X itself is instantiated (X = x”) if we model the
new data by adding to X a dummy child D that delivers the message

1 if y=x~
Ap(X)=8e v = Vg if =y

EXAMPLE 6: In the fingerprint story of Example 5, imagine that we receive reports
from two independent laboratories, Az, (v)=p (0.80.0.60, 0.50) and Az, (v) =P
(0.30. 0.50. 0.90). The overall diagnostic support A(y} attributable to the three possible
values of Y is

Ay) = B(0.80, 0.60, 0.50) (0.30. 0.50, 0.90) = B(0.24, 0.30, 0.45) ,

and this, combined with the previous causal support n(y) = (0.30, 0.35, 0.35), yields an
overall belief of

BEL(y) = 0(0.24, 0.30. 0.45) (0.30, 0.35, 0.35)
(0.215, 0.314, 0.471) .

What happens if Suspect 2 confesses. reliably, that he was the last weapon holder? We
model this confession as a third report Az, (v) = (0, 1. 0) which, by the product rule of Eq.
(4.20), completely overrides the other two and yields Ay) = B0, 1,0) and BEL(y) =
0. 1. 0).
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Now we shall see if X can compute its (x) vector from information available
at its parent U (see Figure 4.14).
Conditioning on the values of U we get

q.nA.d.v = NvA.H _&Mv
=Y P(xleg, w)P(ulex)

=YP@xlu)P(uley).

P(x |u) is the matrix stored on the link U — X, and P(u |l ex) can be calculated by
U and delivered to X as the message

ny(u) =Puley), (4.21)
yielding

T(x) = 2P (x li)my(u) = My« Tox (1) 4.22)

Substituting Egs. (4.20) and (4.22) in Eq. (4.17) we have

BEL(x) = ahy(x)Az ()X P (x Tu)my(u) . 4.23)

i

Thus, node X can calculate its own beliefs if it has received the messages Ay(x) and
Az(x) from its children Y and Z and the message 7y () from its parent U.

PROPAGATION MECHANISM

Our next task is to determine how the influence of new information will spread
through the network. In other words, we imagine that each node eventually
receives from its neighbors the T—A messages needed to calculate its own belief, as
in Eq. (4.23), and we must determine how that node calculates the T—A messages
that its neighbors expect to receive from it. If the calculations can be accomplished
by local computations, and if we let each node perform the calculations often
enough, then the proper belief distributions are guaranteed to be reached,
eventually, at every node.

Consider first the message Ay (u) A P(ex | u) that node X must send to its parent
U (see Figure 4.14). If the value of X is known, say X = x”, then Ax(u) reduces to
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P(x”lu), which is column x” of the matrix M,,,. If X is not known, we condition
P(exlu)onX = xand get

Ax(u) =Y P(exlu, x)P(x 1u)
=Y Plex|x)P(xlu)
=Y AP (x lu)

= M, » Mx). (4.24)

Thus, the message going to the parent U can be calculated from the messages
received from the children and the matrix stored on the link from the parent. Note
that Eq. (4.24) also holds if X itself is instantiated (say to X = x") because in such a
case AMx) = 8, .-, and Eq. (4.24) yields Ax(u) = P(x"|u) as required.

Now, consider the message that node X should send to one of its children, say
Y:

y(x) = P(xley) = P(xlex, e7).
Using Bayes’ Rule, we get

Ty(x) = oP(ez | x, ex)P(x lex)
= oP(ez | x)P(xles)
= ohz(x)T(x)
= 0Az(O TP (x Liymy(u) . (4.25)

The second equality follows from the fact that X separates e; from ey, the third
equality follows from the definition of n(x) (Eq. (4.16)), and the fourth follows
from Eq. (4.22). Thus, the message sent from X to Y is calculated using the
message it receives from its other child Z (in general, the messages it receives from
all its children, except Y) and the message X receives from its parent U. This is
precisely how double-counting of evidence is prevented.

Figure 4.15 summarizes the calculations for node X.
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Figure 4.15. The internal structure of a single processor performing belief updating for
the variable X.

By Eqgs. (4.23) and (4.25),

BEL(x) (4.26)

ﬂdM\Aﬂ»v =0 V(ﬂAir.v ’

so it might be advantageous for node X, instead of sending each child a different
message, to send all its children the value of its current belief, BEL(x), and let each
child recover its respective T message by dividing BEL(x) by the value of the last
message sent to X (caution should be exercised whenever A(x) is zero or is very
close to zero). There is no need, of course, to normalize the T messages prior to
transmission; only the BEL(-) expressions require normalization. The sole purpose
of the normalization constant o in Egs. (4.25) and (4.26) is to preserve the
probabilistic meaning of these messages. It is a good engineering practice to
encode the 7 and A messages so that the smallest component of each will attain the
value 1.
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SUMMARY OF PROPAGATION RULES FOR TREES

We shall now summarize the steps involved in tree propagation by specifying the
activities of a typical node X having m children, Y, Y,,...,Y,,, and a parent U.
The belief distribution of variable X can be computed if three types of parameters
are made available:

1. The current strength of the causal support, my(u), contributed by the
parent of X,

Tix(u) =P (uley) .

2. The current strength of the diagnostic support, vﬁ. (x), contributed by the
Jj-th child of X,

ysc& =P (ey, 1x).

3. The fixed conditional probability matrix P (x | «) that relates the variable
X to its immediate parent U.

Using these parameters, local belief updating can be accomplished in three
steps, to be executed in any order.

Step 1—Belief updating: When node X is activated to update its parameters, it
simultaneously inspects the Tx(#) message communicated by its parent and the
messages Ay, (x), Ay, (x),... communicated by each of its children. Using this input,
it updates its belief measure to

BEL(x) = o Mx) (x), 4.27a)
where
Ax) =11 ?5 ), (4.27b)
i

n(x) =Y, P(x1u) my(u), @.27¢)

and o is a normalizing constant rendering Y BEL(x) = 1.

Step 2—Bottom-up propagation: Using the A messages received, node X
computes a new message, Ay (u), which is sent to its parent U:

Ax) =X MY P(xlu). (4.28)
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Step 3—Top-down propagation: X computes new T messages to be sent to each
of its children. For example, the new Ty, (x) message that X sends to its j-th child
Y; is computed by

iy, () = o) 1T Ay, (x) . (4.29)

The computations in Egs. (4.27), (4.28), and (4.29) preserve the probabilistic
meaning of the parameters. In particular,

Ax(u) = P(exlu), (4.30)
y(x) = P(xlet), (4.31)
BEL(x)=P(xle). 4.32)

Terminal and evidence nodes in the tree require special treatment. We must
distinguish four cases:

1. Anticipatory node—a leaf node that has not been instantiated. For such
variables, BEL should be equal to m, and we should therefore set

A=(1,1,...,1).

2. Evidence node—a variable with instantiated value. Following Eq.
(4.6a), if the j-th value of X is observed to be frue, we set
Mx) =(0,..., 0,1,0,..., 0) with 1 at the j-th position.

3. Dummy node—a node Y representing virtual or judgmental evidence
bearing on X. We do not specify A(y) or ni(y) but instead post a Ay(x)
message to X, where Ay(x) = B P(Observation|x), B being any
convenient constant.

4. Root node—The boundary condition for the root node is established by
setting 1 (root) equal to the prior probability of the root variable.

EXAMPLE 7: To illustrate these computations let us redo Example 5, using tree
propagation on the network of Figure 4.16.
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Figure 4.16. Belief updating in Example 7 using tree propagation. The alibi is modeled
as a dummy node E generating a A message 1:10:10.

As before, let us assume that our belief in the identity of the killer, based on all testimony
heard so far, amounts to m(x)= (0.8, 0.1, 0.1). Before we obtain any fingerprint
information, Figure 4.16a shows Y as an anticipatory node with A(y) = (1, 1, 1), which
means Ay(x) = A(x) = (1, 1, 1) and BEL(x) = m(x). m(y) can be calculated from Eq. (4.22)
(using my(v) = ®(x)), yielding

0.
T(y) = my(x) « My, = (0.8, 0.1,0.1) s 0.
0.

— =00
SO

1
8
1

coo

1
1
8

=(0.66. 0.17, 0.17) = BEL(y) .

Assume that a laboratory report arrives summarizing the test results (a piece of virtual
evidence Z) by the message Az(y) = A(y) = B(0.8, 0.6, 0.5), as in Figure 4.16h. Node Y
updates its belief,

BEL(y) = oA(»)n(y) = (0.8, 0.6, 0.5)(0.66, 0.17, 0.17) = (0.738, 0.143, 0.119),

and based on Eq. (4.28), Y computes a new message, Ay(x), for X:

0.8 0.1 0.1 0.8
M) =M, o« My)=B |0.1 0.8 0.1] « [0.6] =B(0.75, 0.61, 0.54) .
0.1 0.1 08 |05
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Upon receiving this message, node X sets A(x) = Ay(x) and recomputes its belief to

BEL(x) = oA(x)n(x) = (0.75, 0.61, 0.54)(0.8, 0.1, 0.1)
= (0.839, 0.085, 0.076) .

Now assume that Suspect 1 produces a very strong alibi, supporting his innocence ten times
more thah his guilt, i.e., P(Alibi |X # 1) : P(Alibi |X = 1) = 10 : 1. To fuse this information
with all previous evidence, we link a new evidence node E directly to X and post the
message Ag(x)=B(1, 10, 10) on the link (see Figure 4.16¢). Ag(x) combines with Ay(x) to
yield

Ax) = Ag(x) Ay(x) = B(0.75, 6.10, 5.40) ,

BEL(x) = oA(x)n(x) = 0(0.75, 6.10, 5.40)(0.8, 0.1, 0.1)
= (0.343, 0.349, 0.308) ,

and generates the message Ty (x) = 0Ag(x)n(x) = o (0.8, 1.0, 1.0) for Y. Upon receiving
Ty(x), processor Y updates its causal support 7(y) to (see Eq. 4.27)

0.8 0.1 0.1
n(y) = ny(x) e M, ., = (0.8, 1.0, 1.0) « (0.1 0.8 0.1] =(0.30, 0.35, 0.35),
’ 0.1 0.1 0.8

and BEL(y) becomes

BEL(y) = cA(y)n(y) = 0(0.8, 0.6, 0.5)(0.30, 0.35, 0.35)
= (0.384, 0.336, 0.280) .

Finally, since Y has only one child—Z—Eq. (4.29) reduces to mz(y) = n(y) (see also Eq.
(4.26)). The purpose of propagating beliefs top-down to sensory nodes such as Z is twofold:
to guide data-acquisition strategies toward the most informative sources (see Section 6.4)
and to facilitate explanations for the system’s choices.

Note that BEL(x) cannot be taken as an updated prior of x for the purpose of calculating
BEL(y). In other words, it is wrong to update BEL(y) via the textbook formula

BEL(y) = YP(y |x) BEL(x) (4.33)

(see discussion of Jeffrey’s Rule, Section 2.3.3), because BEL(x) was affected by
information transmitted from Y, and feeding this information back to ¥ would amount to
counting the same evidence twice. Only the my(x) portion of BEL(x) is fed back to Y: it is
based on evidence (E) not yet considered in A(v). Another way to view this is that once
information is obtained from Z, the initial value of the link matrix P(y|v) no longer
represents the dependence between X and Y, so P(ylx, z) should replace P(yix) in
Eq. (4.33).

Note also that the activation steps need not be sequential but may be executed in
parallel when several pieces of evidence arrive simultaneously. In the extreme case, we can
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imagine that all processors are activated simultaneously by a common clock. For example,
if the lab report and the alibi arrive together, then in the first clock cycle X and Y will
simultaneously update their beliefs to

BEL (x) = 0(0.08, 0.10, 0.10) = (0.286, 0.357, 0.357) and
BEL(y) =(0.738. 0.142, 0.111)

and produce the messages

Ty (x) = 0(0.08, 0.10, 0.10) and Ay(x) = (0.75, 0.61, 0.54),

respectively. In the second clock cycle, X and Y will simultaneously update their beliefs to

BEL(x) = (0.343, 0.349, 0.308) and BEL(y) = (0.384, 0.336, 0.280)

and produce the same Ty(x) and Ay(x) as before. From now on, the same beliefs and the
same messages will be produced in every clock cycle unless additional evidence becomes
available.

ILLUSTRATING THE FLOW OF BELIEF

Figure 4.17 shows six successive stages of belief propagation through a simple
binary tree, assuming the updating is triggered by changes in the belief parameters
of neighboring processors. Initially, the tree is in equilibrium, and all terminal
nodes are anticipatory (Figure 4.17a). As soon as two data nodes are activated,
white tokens are placed on the links from the nodes to their parents (Figure 4.17b).
In the next phase, the parents, activated by these tokens, absorb them and
manufacture enough tokens for their neighbors: white tokens for their parents and
black ones for their children (Figure 4.17¢). (The links from which the absorbed
tokens originated do not receive new tokens because a t-message is not affected by
a A-message crossing the same link.) The root node now receives two white
tokens, one from each of its descendants, triggering the production of two black
tokens for top-down delivery (Figure 4.17d). The process continues in this fashion
for six cycles, at which point all tokens are absorbed and the network reaches a
new equilibrium. As soon as a leaf node posts a token for its parent, the leaf is
ready to receive new data. If the new data arrives before the token was observed
by the parent, a new token replaces the old one. In this fashion the inference
network can track a changing environment and provide coherent interpretation of
signals emanating simultaneously from multiple sources.



174 Belief Updating By Network Propagation

(a) (b) (©)

® ©) (d)

Figure 4.17. The impact of new data propagates through a tree by a message-passing
process.

This updating scheme has the following properties:

1. The local computations it requires are efficient in both storage space and
time. For a tree with m children per parent and n values per node, each
processor should store n?+mn+2n real numbers and perform
2n%+mn +2n multiplications per update.

2. The local computations and the final belief distribution are entirely
independent of the control mechanism that activates the individual
operations. These operations can be activated by either data-driven or
goal-driven (e.g., requests for evidence) control strategies, by a central
clock, or at random.

3. New information is diffused through the network in a single pass.
Instabilities and indefinite relaxations are eliminated by maintaining a
two-parameter system (T and A) to decouple causal support from
diagnostic support. The time required for completing the diffusion (in
parallel) is proportional to the diameter of the network.
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4.3 BELIEF PROPAGATION IN CAUSAL
POLYTREES (SINGLY CONNECTED
NETWORKS)

The tree structures treated in the preceding section require that exactly one
variable be considered a cause of another given variable. This restriction
simplifies computations, but its representational power is rather limited, since it
forces us to form a single node from all causes sharing a common consequence. By
contrast, when people see many potential causes for a given observation, they
weigh one cause against another as independent variables, each pointing to a
specialized area of knowledge. As an illustration, consider the situation discussed
in Example 7 of Chapter 2:

Mr. Holmes receives a phone call at work from his neighbor notifying him that she
heard a burglar alarm sound from the direction of his home. As he is preparing to
rush home, Mr. Holmes recalls that the alarm recently was triggered by an
earthquake. Driving home, he hears a radio newscast reporting an earthquake 200
miles away.

Mr. Holmes perceives two episodes as potential causes for the alarm sound—
an attempted burglary and an earthquake. Even though burglaries can safely be
assumed independent of earthquakes, the radio announcement still reduces the
likelihood of a burglary, as it "explains away" the alarm sound. Moreover, the two
causal events are perceived as individual variables pointing to separate frames of
knowledge (crime-related information seldom evokes associations of earthquakes),
so it would be unnatural to lump the two events together into a single node.

Treating E = Earthquake and B = Burglary as two separate entities (as in
Figure 2.2) allows us to relate each of them to a separate set of evidence without
consulting the other. For example, if R = The radio announcement and S = The
alarm sound, we can quantify the relation between E and R by the probabilities
P(R | E) without having to consider the irrelevant event of burglary, as would be
required if the pair (E, B) were combined into one variable. Moreover, if R is
confirmed, a natural way to update the beliefs of £ and B would be in two separate
steps, mediated by updating S. E and B are presumed to be independent unless
evidence supporting S is obtained (e.g., the neighbor’s phone call); when this
happens, E and B find themselves competing for a fixed amount of evidential
support—information favoring one explanation (e.g., the radio report) would
weaken the other explanation by undermining its connection with the mediator S.

This competitive interplay among multiple explanations is a prevailing feature
of human reasoning and has been discussed in previous chapters (see Sections
1.2.2 and 2.2.4). When a physician discovers evidence in favor of one disease, it
reduces the likelihood of other diseases that could explain the patient’s symptoms,
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although the patient might well be suffering from two or more disorders
simultaneously. When we find our driveway wet, the discovery that the sprinkler
was on all night weakens the likelihood that it rained at night. The same maxim
also governs the interplay of other frame-like (though not necesarily causal)
explanations. For example, the sentence "Tweety tasted wonderful” provides a
clue that Tweety, the celebrated non-flying bird from the Al literature (see Chapter
10), is not a penguin after all; a more likely explanation for Tweety’s reluctance to
fly is that she is broiled.

This section extends our propagation scheme to Bayesian networks where a
node may have multiple parents, thus permitting "sideways" interactions via
common successors. The networks are, however, required to be singly connected,
namely, no more than one path exists between any two nodes, as in Figure 4.18a.
We call such networks causal polytrees because they can be viewed as a collection
of several causal trees fused together at the nodes where arrows converge head to
head. The absence of loops in the underlying network permits us to develop a
local updating scheme similar to that used for causal trees. The derivation of the
propagation rules, likewise, will correspond to the derivation of Eqs. (4.27)
through (4.29). The impatient reader is advised to skip directly to the Summary,
Eqgs. (4.47) through (4.53).

(@)

Figure 4.18. (a) A fragment of a polytree and (b) the parents and children of a typical
node X.
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4.3.1 Propagation Rules

Consider a typical fragment of a singly connected network (Figure 4.18h),
consisting of a node X, the set of all X’s parents, U = {U,..., U, }, and the set of all
X’s children, Y = {Y,,..., Y,,}. Asbefore, let ebe the total evidence obtained, ex be
the evidence connected to X through its children (Y), and e} be the evidence
connected to X through its parents (U), so that

BEL(x) = aP(ex 1x)P(xle})
= oA(x)m(x). (4.34)

ex and e} can be further decomposed into

ey = Nulax_ seens &ylﬁwz
and

+ +
ey = QQ_X,..J &Q:X R

where €xy, stands for evidence contained in the subnetwork on the 4ead side of the
link X—Y;, and mmk.x stands for evidence contained in the subnetwork on the tail
side of the link U, —X.

To avoid cumbersome notation, we will treat all evidence as virtual, i.e.,
obtained from dummy children of variables whose values are known. Thus, all
instantiated nodes in the networks are assumed to be leaf nodes. Now,

M) A Pex |y)

= Pexy, . €y, | X)

= P(exy, 1x) - Peyy, |x) = Plexy, 1 X)

m

m

= [T, 0, (4.35)
j=1

where

v&o (x¥) = P(exy, 1v). (4.36)
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Also,

n(x)AP(xlex)

\UAH _&Nﬂkf... &M.\:umv

¥ P&luy,.uy) Py, el x,.... €,x)
I

Uy

> Pxluy,..,u,) Puyled; x) P(uylef,y) — P(u,lefx),

n

Wy Uy

because each pair {U;, ej;x} is independent of the other U’s and their evidence

sets.

Let
Ty (1) = P(y; _&mmxv. (4.37)
Then
)= Y, Plluy,.., u,)Tx(u;)mg(uy) = myx(uy,)
=Y P lw)f [rx(u;) . (4.38)
u i=1
Substituting Eq. (4.36) and Eq. (4.38) in Eq. (4.34), we get
BEL(x) = «. :vﬁ. @) | 2P )] Jrx ) (4.39)
j=1 u i=1

Thus, node X can calculate its own beliefs if it receives the messages v&o. (x) from
its children and my (y;) from its parents.

To prescribe how the influence of new information will spread through the
network, we need to specify how a typical node, say X, will compute its outgoing
messages Ay(y;), i = 1,..., n, and nsC.v. Jj = 1,..., m, from the incoming messages
v(SC.Y j=1,...mand ty(u;), i =1,..., n.

UPDATING A
Consider the message Ax(y;), which node X must send its parent U;. By Eq. (4.36),

v(keb.v = WA&M\NX ::v. A&.&Qv
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In deriving Ax(x;) it is convenient temporarily to treat all parents (except U;) as

a single compound variable,

(4.41)

<” N\|Q_. = *QH svany QNIT QN.+~ seeny sz N

connected to X via a single link V—X, as in Figure 4.19.

Figure 4.19. Variables, messages, and evidence sets used in the derivation of hy(u;).

The evidence ey x governing Ax(#;) can now be decomposed into two

components:
eyx = leix, ex} (4.42)

where

U elx - (4.43)

ki

€yyx
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Substituting Eq. (4.42) into Eq. (4.40) gives
Ax(u;) = P(evy, ex | u;)

”MMWA&“V? &W:&T v, vaAaﬁ H_tmv

v

(conditioning on x and v)
=Y Y P(ex|x) P(eyx v) P(v, x lu;)
(since X separates ey from ex and V separates e{y from U;)

P(vledy)

um M _M an_\s |wcwv| w@_,xsvw?_zb

(by Bayes’ Rule)

=BY Y Plex|x) P(vlejy) P(x v, ;)

v

(since U; and V are marginally independent)

Restoring the meaning of V from Egs. (4.41) and (4.43), we have
P(xlv, u))=P(xlu),

P(vlely) =TI P(ucleix) = 1 Pulegx) = I1 my(uy),

ki k#i ki
and Ay(u;) becomes
M) =B Y M) Y Plxlw M Ty (ug) (4.44)
x k2 !

where A(x) is given in Eq. (4.35). As before, Ax(1;) is not affected by 7y (1;); the
two messages pass along the same arc (in the opposite direction) without
interacting.

In the derivation above we assumed that X itself is not instantiated and
therefore is not part of the evidence set ey x in Eq. (4.42). This assumption does
not affect the generality of Eq. (4.44) because the fact that X is an evidence node
attaining the value x” can always be represented by instantiating a (dummy) child
node Z, and thus delivering a message Az(x) to X, where

I x=x"

AzX) =8 =10 y=x’
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UPDATING =

Consider the message Ty (x), which node X must send to its child ¥;. By Eq.
(4.37),

Ty, (x) = P(xlexy) .

mms stands for the entire body of evidence e, excluding evidence found in the
subnetwork on the head side of the link X—Y s

v u
€xy, = €~ éxy,

Thus, Ty (x) is equal to BEL(x) when the evidence exy, is suppressed.
Equivalently, the expression for Ty, (x) can be obtained from BEL(x), Eq. (4.39),
setting Ay (x) = 1. This leads to

Ty, (x¥) = & m Ay, () T(x) (4.45)
(#j
where m(x) is given in Eq. (4.38). Alternatively, Ty,(x) can be obtained from
BEL(x), writing

BEL&X) _ pEr v (4.46)

q.S\.A.N.v =
! Ay, () Ay = 1.

BOUNDARY CONDITIONS

The boundary conditions are established as follows:

1. Root nodes: If X is a node with no parents, we set (x) equal to the prior
probability P(x).

2. Anticipatory nodes: 1f X is a childless node that has not been
instantiated, we set A(x) = (1,1,...,1).

3. Evidence nodes: If evidence X =x” is obtained (X being any node in the
network, not necessarily a leaf node), we set A(x)=8,, =
©,...,0,1,0,...,0) with 1 at the x"-th position. Alternatively, the evidence
X =x" can be simulated by adding to X the auxiliary child node Z,
directing a message Az(x) = §, .- toward X.

Egs. (4.44) and (4.45) demonstrate that the outgoing messages, Ty, (x) and Ay (11),
are determined from the incoming messages available to X. They also demonstrate
that perturbation of the causal parameter ® does not affect the diagnostic parameter
A on the same link, and vice versa. The two are orthogonal to each other since
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they depend on two disjoint sets of data. Therefore, any perturbation of beliefs in
response to new evidence propagates through the network and is absorbed at
peripheral nodes without reflection.t A new equilibrium state will be reached
after a finite number of updates—if they are conducted in parallel, the number will
be equal to the diameter of the network.

Eq. (4.44) also reveals that if no data are observed below X (i.e., all As pointing
to X are unit vectors), then all As emanating from X are unit vectors, regardless of
the incoming 7 messages. So, evidence gathered at a particular node does not
influence any of its spouses until their common child gathers diagnostic support.
This reflects the d-separation conditions established in Section 3.3.2 and matches
our intuition regarding multiple causes. In Mr. Holmes’ case, for example, prior to
the neighbor’s telephone call, seismic data indicating an earthquake would not
have influenced the likelihood of a burglary.

SUMMARY OF PROPAGATION RULES FOR POLYTREES

The steps involved in polytree propagation are similar to those used with trees. We
shall now summarize these steps by considering a typical node X having m
children, ¥1,..., Y,,, and n parents, U ,..., U,, as in Figure 4.18b.

The belief distribution of variable X can be computed if three types of
parameters are made available:

1. The current strength of the causal support m contributed by each
incoming link U;—X:

qﬁXQ:v = WQ\: _wa\mkv . An_..n_.ﬂv

2. The current strength of the diagnostic support, A, contributed by each
outgoing link X — ¥;:
v(uo. A(p.v = WANWN\. _-’.v . An‘.hmv

3. The fixed conditional-probability matrix P(x |u,,..., u,) that relates the
variable X to its immediate parents.

Using these parameters, local belief updating can be accomplished in three steps,
to be executed in any order.

Step 1—Belief updating: When node X is activated, it simultaneously inspects
the messages Ty(u;), i = 1,..., n communicated by its parents and the messages

T A peripheral node is either a root with a single child or a leaf with a single parent. Every polytree
must have at least two peripheral nodes.
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Ay,(x), j =1,.., m communicated by its children. Using this input, it updates its
belief measure to

BEL(x) = o AMx) 1(x), (4.49)
where
Mx) = H\H Ps.@.v , (4.50)

nx)= Y Pllug,.., ) ngGy), 4.51)

Uy Uy

and o is a normalizing constant rendering Y, BEL(x) = 1.
X

Step 2—Bottom-up propagation: Using the messages received, node X computes
new A messages to be sent to its parents. For example, the new message Ax(u;) that
X sends to its parents U; is computed by

M) =B X Mx) Y Plxluy,., u,) I my(uy) . (4.52)

. k# ki

Step 3—Top-down propagation: Each node computes new T messages to be sent
to its children. For example, the new 7y (x) message that X sends to its child ¥; is
computed by

qﬁs A«x.v =0 MM\ VeS,. A\ev M WAH fu Toeees Izv : ﬁkmtmv A&.mwv
Wiy Uy !

BEL(x)
=qa .
Ay, ()

Numerical examples illustrating these propagation rules in polytrees are given
in Section 4.5.3 (see also Section 5.2.1).

The presence of multiple parents introduces an added dimension of
complexity; although the computations in Egs. (4.51) through (4.53) are still local,
the summation ranges over all value combinations of the parent variables, which
are exponential in »n. If the number of parents is small, the summation can be
performed by enumeration. However, if there are more than four or five parents,
approximation techniques must be invoked that make use of the special structure
of the link matrix P(x luy,..., u,).

In Chapter 2, we remarked that when » is large, we must use prototypical
models of child-to-parents interaction, involving disjunctions and conjunctions
(noisy OR- and AND-gates), in order to specify the link matrix. Here we see that
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considerations of computational complexity also dictate such usage. In the next
section, we shall see that some of these prototypical models enable us to compute
Egs. (4.51) through (4.53) in closed form, thus reducing the computation of the
outgoing messages to simple products of about # parameters.

4.3.2 Canonical Models of Multicausal
Interactions

The original formulation of Bayesian networks (Section 3.4) required, for each
variable X, that one assess the conditional probability P(x l«), where U is a set of
variables judged to be direct causes of X. We have also noticed that the individual
elements of U often point to disparate frames of knowledge, making it difficult to
assess P(xlu). If U, and U, represent frames of knowledge truly foreign to one
another (e.g., burglaries and earthquakes) except that they share X; as a common
consequence (e.g., triggering the alarm), one cannot expect to find the matrix
P(x\uy, u,) prestored in memory. No reasoning system could spare the space
required to permanently store the strength of connection between every
conceivable event and every combination of conditions that might trigger that
event. A more reasonable organization scheme would be to let each frame hold
separately the weights associated with each of its likely consequences. Then,
should a situation evoke more than one frame, the system can compute the weights
of their common results "on the fly," using some universal combination rule. For
example, in our burglary alarm scenario, it is reasonable to expect people to have
some prestored idea of the likelihood that a burglary will trigger an alarm or that
an earthquake will trigger it, but not of the likelihood that the combination,
burglary and earthquake, will trigger it. A physician is expected to have
prepackaged estimates of the chances that an individual disease will be
accompanied by high fever, but when asked to estimate the likelihood of high
fever given some rare combination of diseases, the physician cannot refer to
prestored knowledge. Rather, she must resort to some canonical model of disease
combinations in general, which most likely is also domain-independent, i.e.,
applicable to a wide class of interacting causes.

DISJUNCTIVE INTERACTION (THE NOISY OR-GATE)

One of the most common models of this type is disjunctive interaction (the "noisy
OR-gate" of Chapter 2), which leads to a very convenient and widely applicable
rule of combination. Disjunctive interaction occurs when any member of a set of
conditions is likely to cause a certain event and this likelihood does not diminish
when several of these conditions prevail simultaneously. For example, if each
individual disease is likely to cause high fever, then a patient suffering from
several of these diseases simultaneously would only be more likely to develop high
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fever. Moreover, if the patient is also suffering from a disease that in isolation is
not normally accompanied by high fever, this added information does not reduce
the patient’s likelihood of developing high fever from the other diseases.

Disjunctive interactions can be approximated by an elegant mathematical
model based on two assumptions: accountability and exception independence.

Accountability requires that an event E be presumed false (i.e., P(E) = 0) if all
conditions listed as causes of E are false. In the burglary alarm example, this
assumption requires that we list explicitly the main conditions likely to trigger the
alarm and lump together all those conditions that we prefer to keep implicit under
the heading "All other causes."

Exception independence asserts that if an event E is a typical consequence of
either one of two causal conditions ¢ and ¢, then the mechanism that may inhibit
the occurrence of £ under ¢, is independent of the mechanism that may inhibit E
under c¢,. Each exception to normal behavior acts as an independent variable. For
example, the mechanism that inhibits the activation of the alarm during an
earthquake could be low vertical acceleration, while the mechanism acting during
a burglary could be the burglar’s skill and sophistication. Since these two can
safely be presumed independent of each other, exception independence holds. A
power failure, on the other hand, would inhibit the alarm activation in both frames
and thus would violate exception independence if it is a likely event.

These two assumptions are represented schematically in Figure 4.20. The
event X represents a prediction or a consequence and is viewed as the output of a
logical OR-gate. Each input to the OR-gate is the output of an AND-gate
representing the conjunction of a causal explanation of X, U;, and the negation of
its specific inhibitory mechanism ;. (Readers familiar with the IN and OUT
justifiers in truth maintenance systems [Doyle 1979] or with the abnormal
predicate in circumscription [McCarthy 1986] should note their resemblance to the
U; and I, variables in Figure 4.20.)

The inputs U = (U}, U,,..., U,) are the parents of X in the Bayesian networks,
and they normally represent explanations, hypotheses, conjectures, causal factors,
or enabling conditions that may account for the occurrence of X. The inhibitors
Iy,..., 1, represent exceptions or abnormalities that interfere with the normal
relationship between U and X. These are normally not represented by nodes in
Bayesian networks but are summarized implicitly by the link matrix
P(xluy,.., u,). Here we explicate their structure and display them as root nodes in
order to justify an especially useful form of the link matrix.

CONSTRUCTING THE LINK MATRIX

Denote by g, the probability that the k-th inhibitor is active. If U, is the only
parent that is TRUE, X will be TRUE iff the inhibitor associated with U, remains
inactive. Hence, we have

P(X =TRUEI\U; =TRUE, U, = FALSE k#i)=1-g; .
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Explanations
or Conditions

Exceptions
or Inhibitors

Figure 4.20. The noisy OR-gate. A canonical model of disjunctive interactions among
multiple causes U, ... U, predicting the same effect X.

Thus, the parameter

¢ =1-g

represents the degree to which an isolated explanation U; = TRUE can endorse the
consequent event X = TRUE.
Let

=, Us,.., ;) u € {01}

represent any assignment of truth values to the parent set U. The mmmcnﬁag.opﬁ
exception independence permits a closed-form calculation of the probability
distribution of X given any assignment state w. If T, represents the subset of
parents that are TRUE,

T, = {i:U; = TRUE},
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then X is FALSE iff all inhibitors associated with T, are active. Thus, we can write

P(X = FALSE luw) = T1 ¢;,

ieT,

or

Hl% Qm HA., X = O
Pixluy= " (4.54)
1-11 ¢ if «x
ieT,

I
—_

where x =0 and x =1 represent the events X = FALSE and X =TRUE,
respectively. Eq. (4.54) constitutes a full specification for the link matrix. It also
represents a general scheme for approximating a link matrix P(xlu) from
individual parent-child relationships, in cases with negligible cross-interaction.

COMPUTING BEL(x)
Following Egs. (4.49) through Eq. (4.54), we write

BEL(x) = ol Mx) Y, P(x lu) T my(u;)

ieT,

ak X (I gTme(n) if x=0

(4.55)

o;;MUCI Q S:\”—:xﬁz»v :qw.u_,
u el ¢

where A(x) = (Ag, A;) represents the combined evidential support contributed by
X’s children and 1ty (u;) represents the message X receives from its /-th parent (i.e.,
the probability distribution of the i-th parent given all evidence from the
subnetwork at the tail of the link U; — X).

The summation in Eq. (4.55) can be obtained in closed form by ecursive
summation over the individual U’s. Denoting by +u; and —u; the propositions
U; = TRUE and U; = FALSE, and letting

Tx = Tx(+u;) = 1 =y () ,
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é,o define

:\»n_:n.u ::ﬂ. :Tn.,
" IMAmmﬂ:QL» XAN;V M ~.mﬂ=Q NX mmﬂnA ~Xv

and summing over the two states, +u; and —uj, of one of the U’s, say U;, we obtain

I, = T\ @:si@?i Y I g I

u—u; ieT,—j k#j

T\. Ty + 1 la\L My, == mpx) Iy

Thus, summing over u; has the effect of pulling out a factor (1 —c; 7x) and leaving
behind the same form with u — u; instead of u, where

§|:\ = T\:g..., K\,I_. =\+T..; ==u .

Applying this recursively { gives
I, =I(gmx +1- Tix) - (4.56)
i
Hence,

o AIT (1 —¢; Tx) ifx=0
BEL(x) = ' (4.57)
Q.v: _”.—]HHA~|Q~.§~.XVH ifx =1.

Thus, we see that the overall belief distribution of a variable X can be formed by a

multiplication over the individual contributions of X’s parents (and X’s children,

via AMx) = (Ag, A)). The product ¢; Ty can be interpreted as the degree of

predictive endorsement that the parent U; lends to the proposition X = TRUE,

hence the product I1(1 — ¢; T;x) represents the overall endorsement withheld by all
i

t This derivation is due to Charles Kalme. Another way of verifying Eq. (4.56) is to use the formula

[a; + b)) =3, ( 1 a;)( I1 b;),substituting @; = g;mx and b; = 1 —Mx .
! u €Ty ieT,
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parents. When each ¢; m;x endorsement is small, Eq. (4.57) can be approximated
by

mmﬁauc?
BEL(x = 0) = ﬂ M ¢ Ty , (4.58)

demonstrating that the combined endorsement by all parents is additive over the
individual endorsements.

COMPUTING THE \'s
Using Eq. (4.44) we write
v(xﬁb.v = @M v(Aw.v M WAH | §v E q.nkﬂ:»,v . Ah.mwv

u-u; ki

The second summation in Eq. (4.59) is identical in form to that of Eq. (4.55),

except that u; is now excluded from the summation. Accordingly, using the
formula Eq. (4.56) for IT",, we get

Ax(u;) = B Y, Mx) F(x, u;),

where
[“H :.AH|Q» ﬁ»kv if x=0
F(x, +u;) = ki
l-g I d-¢my if x=1
ki
and

F(x, —u;) = F(x, +u;)
gi=1

Inserting this in Eq. (4.59) yields

B g T+ A (L=g TID] if w = +y
Ax () =16 g T, + A,y (1—TT7)] if ;= -, (4.60)
where
I = m (1 —cp mix) (4.61)
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represents the overall endorsement withheld by all parents except U;. A more
concise formula for encoding Ay (i;) is

Ax(u;) = B T: — g (A = A) IT =0, 1.

INTUITIVE INTERPRETATION AND CREDIT
ASSIGNMENT POLICY

Since only the ratios

Ax(+1;) M
Lyy, = a and Ly = ——

Ag

enter the updating rules, we can write Eq. (4.60) as
Lo - gl + (1 —q;11) Ly
XTI+ (1-T17) Ly

T ey — 1)
. 62
T a-m) - (4.62)

Note that Ly = 1 implies Lyy, = 1, so if X gathers no evidential support, U; will
neither receive evidential support from X nor be affected in any way by the other
parents. This phenomenon is true in general (see Eq. (4.44)), and it reaffirms our
intuition that causal frames should remain uncoupled until their common slots
receive indication of empirical confirmation or denial. However, the noisy-OR-
gate model has one more condition under which causal frames remain uncoupled,
namely, when X is completely denied. This can be seen by substituting Lx = 0 in
Eq. (4.62)), yielding

Lyy, = l-¢ =g,

independent of ¢, or Ty, k #i. Thus, the denial of a common effect X results in
each causal factor receiving a constant support g; < 1, regardless of the existence
of other factors (g; is usually very small, so Lyy. = ¢; means the withholding of
support from U;). From a network analysis viewpoint, this phenomenon means
that any negatively instantiated variable X acts as an absorption barrier, similar to
an anticipatory variable. The messages Ty converging onto such a variable are
totally absorbed and do not generate new A messages. Negatively instantiated
variables can even turn multiply connected networks into polytrees (see the
example in Section 4.5.3, Figure 4.37).

There is another condition under which U, receives no evidential support from
X, namely, when at least onec of the other parents, say U, extends a full
endorsement to X by having c;my = 1. Under this condition IT"; = 0, and again,
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Ax(+1;) / Ax(—u;) = 1 regardless of ¢;, meaning the connection between X and U;
is totally disrupted by U,. This fits intuition; once we find a satisfactory
explanation for a suspected symptom, that symptom no longer imparts
confirmation to other explanations, no matter how sure we are of the symptom.
For example, once I learn that the ignition wires in my car are disconnected, I no
longer hypothesize a faulty battery no matter how sure [ am that my car will not
start. Explanations act as logical valves shutting off each other’s flow of evidential
support when they become confirmed. When two or more explanations achieve
¢ T = 1, none of them can receive evidential support from X because the IT’; of
each one, and of any other explanation of X, becomes zero. In fact, achieving
¢;Tix = 1 means the k-th explanations no longer need X’s support; it is firmly
established by other sources of information, and from that position its sole effect
would be to undermine the flow of support from X to every other explanation. In
Chapter 10, we shall formulate this undermining effect in the framework of default
logic.

Ay (+1¢;) 7
— -1
5 v(k ﬁl_:mv

4
Evidential weight

passed to U,
(normalized) 2

- 0 1 2 3 4 5 6 7 8 9

-1 Evidential weight at X

Figure 4.21. The support that a partially confirmed event lends to its i-th explanation, U;,
as a function of the evidential weight accrued at X, and the amount of credit
IT°; left unclaimed by alternative explanations.
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Figure 4.21 depicts the relationship between the likelihood ratios Lyy, and Ly
for several values of IT";. It shows that for a given value of II";, there is a
maximum amount of evidential support that can be transferred from X to U;. That
amount (see Eq. (4.62)) is equal to

Ci ﬂl—\m

_ 4.63
o 4.63)

N\XQ.. = — +

and it is reached when Ly = oo, namely, when X = TRUE is confirmed with
absolute certainty. Thus, I1°; can be thought of as the maximum amount of
residual credit left unclaimed by all alternative explanations combined.

An interesting situation develops when the a priori probabilities my are
extremely small. Under this condition, each cause individually provides only a
small endorsement to the event X = TRUE. Yet when the truth of X is confirmed,
the relative likelihoods of the various causes are determined by the relative
magnitudes of their ¢; 7 products. To see this, we write

BEL(+u;) myx Lxy,

WMN\AJ:\CV Tix N\XQ\.

Since Ty << 1renders IT; = 1in Eq. (4.61), Eq. (4.63) yields

WMNLA+=~.V C; My

BEL(+u;)  ¢jmyx’

If we make the further assumption that only one of the causes can be true (single
cause assumption), we get the formula

C; T;
BEL(+u;) = ——2—

Mﬁ» Ty
k

Thus, the amount of credit deserved by explanation U; is given by the product
¢; Ty, i.€., the endorsement offered by the explanation weighted by the probability
that it is in fact TRUE.

To further demonstrate how parents compete for the evidential support
provided by X let us assume that X is not confirmed with certainty, i.e., Ly is finite.
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Making the rare-endorsement assumption
gy << 1 for k#i

and expanding Eq. (4.62) in Taylor’s series, we obtain

N\XQ_. -1= —HN.X - HH— ¢ |1- M CrTux | - (4.64)

ki

The term Ly — 1 can be identified with the overall evidential weight received by
the proposition X = TRUE. Accordingly, Eq. (4.64) demonstrates that the
evidential weight received from X by the i-th parent depends on three factors:

1. Ly — 1 =the total evidential weight accrued at X.

2. ¢; =the degree to which U; endorses X (if U; is TRUE).

3. 1-Y c¢;mx = the amount of residual credit left unclaimed by all other
ke
parents.

Thus, the struggle for a share of X’s support is settled by the following policy: he
who risks the strongest endorsement in a prediction earns the greatest credit when
that prediction materializes. Note that while parents compete for credit from their
child’s success, the same is not true for children; the more a child endorses a
parent, the greater the benefit to its brethren. This distinction is further examined
in Section 10.3.

OTHER CANONICAL MODELS

The basic noisy-OR-gate model of the preceeding subsection is too restrictive in
some applications, and more elaborate interactions among the causal conditions
are sometimes needed. For example, conditions might interact conjunctively
rather than disjunctively. The basic structure of such models remains the same,
however: Boolean combinations of explicated conditions. The unexplicated
conditions are summarized probabilistically under the assumption of exception
independence.

The assumption of exception independence can easily be relaxed to represent
global abnormality conditions, i.e., conditions that would inhibit the response
event X even when several causal factors are triggered. For example, a power
failure would inhibit the alarm from sounding under simultaneous burglary and
earthquake conditions. To incorporate global inhibition in the model of Figure
4.20 we simply add another AND-gate between the OR-gate and the response
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variable X, as in Figure 4.224. When the global inhibitor I, is ON, X will be OFF,
regardless of other causal factors.

MM%WMMQ I Enabler
oy (e.g., reset button)
(e.g., power failure) a a
X X
(a) (b)

Figure 4.22. Canonical models of global inhibition (a) and enabling mechanisms (b).

In this fashion, we can also model various enabling mechanisms, i.e.,
conditions that have no influence of their own (on X) except to enable other
influences to take effect. For example, if the alarm system has a reset button which
Mr. Holmes occasionally forgets to push, setting this button is an enabling
condition, as in Figure 4.22h.

SUMMARY

Canonical models can be thought of as default strategies for completing the
specification of a Bayesian network whenever detailed interactions among causes
are unavailable, too numerous to elicit, or too complex to be treated precisely. In
particular, the disjunctive model of interacting causes has several advantages: it
requires the specification of only n parameters (for a family of n parents), it
executes the propagation routine in only # steps (for each node with n parents), and
it leads to conclusions that match our intuition about how credit should be assigned
among competing explanations. Having explicated the assumptions behind
disjunctive interaction, i.c., accountability and exception independence, we can
scrutinize the model’s range of adequacy at a very basic level, and once this test is
passed, the adequacy of the credit assignment policy is guaranteed.




