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Combining Predictive and Diagnostic Supports:
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O(Hle) = L(e[H) O(H)

This formula allows us to update our belief about H once we have
observed evidence e.



EX:

You are awakened one night by the sound of your house alarm. Every
night one in ten thousand homes gets burglarized. There is a 95%
chance that a burglary attempt triggers the alarm, there is a 1% chance
that the alarm triggers by other reasons such as malfunction. What is the
probability that your house is being burglarized?

P(Alarm | Burglary) = 0.95 a @

P(Alarm | —=Burglary) =0.01
P(Burglary) =10

(e CAlarm S

O(Burglary | Alarm) = L(Alarm | Burglary).O(Burglary)
P(Alarm | Burgalry)
P(Alarm | =Burglary)

L(Alarm | Burglary) =



0.95
L(Alarm | Burglary) = —
( | Burglary) 001

P(Burglary) 10
P(—Burglary) 1-10*

O(Burglary) =

O(Burglary | Alarm) =0.0095
0.0095
1+0.0095

P(Burglary | Alarm) = =0.00941



Pooling of Evidences

Assume that the alarm systems consists of n devices, and each produces a
different sign.



Let ek stand for evidence k (k" detector):
el evidence k confirms the hypothesis
es evidence k disconfirms

_ P(ef|H)
~ P(ef | —H)

L(e; [H)

The combined belief is obtained from:

O(H |e',e%,....e")=L(e",e%...,e" |H) O(H)
=L(e'|H).L(e* |H)...L(e" | H) O(H)

—O(H) [ [ L(e" | H)

assuming that the n devices operate independent of each other.



Recursive Bayesian Updating
Suppose we have observed n evidences 8" =¢',e”,...,e
regarding a hypothesis H.

n

Now, a new evidence e’ becomes available. It needs to be incorporated
Into the previous results.
Since evidences are assumed to be independent:

P(e'|€",H)=P(e'|H)
P(e'|€",—H) =P(e'| =H)
Thus:
O(H|&",e') =O(H|&") L(e| H)

So to update the belief, multiply the current posterior odds by the
likelihood ration of e’.



If we take the log of the above formula, we get an incremental

updating process.
logO(H |€",e')=1log O(H|€") + log L(e'| H)

This is the weight carried by evidence e’.
Evidence supporting the hypothesis carries a positive weight
and that opposing it carries a negative weight.

If we later find that one of the evidences was erroneous, we

can rectify the error using:
A=log L(e"|H)-log L(e" | H)

correct

where e® =e¢e

wrong

e’ =g



Multi-VValued Hypotheses

The outcome of a hypothesis could be one of several states.
Em

Hl
S

For example, burglary could be break-in through the door, or
break-in through the window. Similarly evidence may have
several modes.

* Refine the hypothesis space, and group the hypotheses into
multi-valued variables. Represent conditional probabilities
relating the hypothesis outcomes and evidences with a
matrix.



EX:

Using burglary, assign H,, H,, H; and H, as follows:

H, = No burglary, animal entry.

H, = Attempted burglary, window break-in.
H, = Attempted burglary, door break-in.

H, = No burglary, no entry.

Each evidence, ek has the following possible values:

e, =nosound
es = low sound
es = high sound
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Represent the conditional probabilities by a matrix:

P(e! | H;) =element i, j in the matrix represents
the conditional probability between
the jt value of evidence k and hypothesis H..

e € &
H,[05 04 017

(et 1) 2| 006 05 0.44
b H,| 0.5 01 04
H,| 1 0 0 |
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To compute total belief from a set of n evidences,
do the following:

Let
A =[Pl IH) P [H,)...Pef [ H,)]

In this case 4 outcomes for the hypothesis

a1 k This is not traditional vector product, it is
A. — ﬂ .
I I the product of vectors term by term.

then:
P(H. |e',e%,....e")=a P(H,) A,

o 1S a normalizing factor which will be set to ensure the
posterior probabilities for H; sum up to 1.
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EX: In our last burglary example, assume we have two alarms
each with properties given by the previous matrix. Let’s
assume the prior probabilities are :

10.099"
0.009
0.001

0.891

IS(Hi):

We hear our first detector issuing a high sound. The second
detector in our system is silent.

el = high sound
e? = silent
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P(et|H,)| [0.1]
iio P(e3|H,) | _| 0.44
Pel|H,)| | 0.4
(Pe;IH,)| | 0 ]
[P(e?|H,)| [05]
o P(e; IH,)|_| 0.06
Pe?|H,)| | 05
_P(ef|H4)_ L 1 _
(0177057 [ 0.05 ]
L 0.44||0.06| [0.0264
A=1*2 _
04|05 0.2
o1 || 0o
P(H, |e,e*)=a P(H,) A
[0.009[ 0.05 ]
~10.009 || 0.0264
~“lo.001|| 02
0.891]| 0
(4957 [0.919 ]
,10.238 0.0439
=.10 =
0.2 0.0375
0| | O
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Arrival of information at different times

We can update belief incrementally by using earlier posterior
probabilities as priors for later arriving information. Let’s say
that we first observe a high sound from our 1%t device.

PH. |e)=a A'P(H,) =«

- 0.0099 |
0.00396
0.0004

0

0.277
0.028
0

10.694
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|ater we obtain information from our 2" device:

P(H. |e',e*)=a"' 4> P(H.

[ 0.347 |

0.0166

0.014
0

 0.919 |
0.0439
0.0375
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