Heuristic Search:
The problem of local maxima arises because Hill-Climbing
makes irrevocable decisions at each point in search space.

A search that uses one or more items of domain-specific
knowledge to traverse state-space Is called heuristic search. A
Heuristic is a rule of thumb, and may not be guaranteed to
succeed, but it is useful in most cases.

Heuristic search works the same way as hill-climbing except
the next node to be expanded is selected among all possible
nodes, not just the successors of the current state.



An Algorithm for Heuristic Search:

1.

w

Create a search graph G, consisting solely of the start node S. Put S on a
list called open.

. Create a list called closed, which is initially empty.
. Loop: If open is empty, exit with fail.
. Select the first node from open, remove it from open and put it on

closed. Call this node n.

. If success(n) = true, then exit with success (to find the solution trace

back fromntos.)

. Expand node n, generating the set, M, of its successors, and put them in

G as successors of n.

. Establish a pointer to n from those members of M which are not already

in G (that is not already in open or closed). Add these members to
open. For those members of M which are on closed and their children,
determine if their back pointers should be changed, and if so change.

. Reorder the list open according to heuristic merit of each element.
. Go to Loop.
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Evaluation Functions

We use the function f(n) to evaluate the promise of node n.

f(n) must be the estimate of the cost of a minimal cost path from
the start node to a goal node constrained to go through node n. fis
then used to order the nodes in open in step 8 of the previous
algorithm.



Designing Optimal Evaluation Functions:
Let K(n;, n;) be the actual cost of a minimal cost path between two

arbitrary nodes n; and n;. Then for a particular goal node t,, K(n, t;) gives
the minimal cost path from n to that goal node.

Let
h*(n) = min K(n, t)
thus h*(n) is an optimal path cost from n to a goal.

Similarly
g*(n) = K(s, n)
cost from start node to node n.

then

f*(n) = g*(n) + h*(n)
will be an evaluation function which at any node n gives us the cost of an
optimal path from s to a goal node constrained to go through n.



To design an evaluation function, develop one which looks like

f(n) = g(n) + h(n)
and estimates the components of * well.

An obvious choice of estimate for g*(n):

g(n) = X arc-costs while tracing from n to s on the best path
found so far.

=>g(n) >=g*(n)

Question:
For what value of f(n) will we produce breadth-first search?




Claim:

If h is a lower bound on h* (that is, if h(n) =< h*(n) for all
nodes) then the heuristic search algorithm will be guaranteed
to find an optimal path to a goal, If one exists. => Admissible

Recall:

A search i1s admissible if for any graph, it always terminates
In an optimal path from s to a goal node whenever a path
from s to a goal node exists.
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Proof Steps:

1. Show that the algorithm terminates whenever a goal node
IS accessible.

2. Show that it terminates by finding a goal node.
3. Show that it terminates with an optimal path to a goal node.

An Important Result:

At anytime before A* terminates, there exists on open a node
n’ that is on an optimal path from S to a goal node with f(n’)
<=f*(S)

Another Important Result:

For any node n selected for expansion by heuristic search,
f(n)<=r*(S)
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Comparing HS Algorithms

Let us assume we have two versions of H. search, one with
f,(n) = g,(n) + hy(n), and one with f,(n) = g,(n) + h,(n).

Now assume that h, and h, are both lower bounds on h*, we
say that HS2 is more informed than HS1, if for all non-goal
nodes h,(n) > h,(n).

= You can show that if the implicit graph is searched by both
algorithms, then at termination if node n was expanded by
HS2, it was also expanded by HS1. Thus HS1 always
expands as many or more nodes than HS2.
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