Heuristic Search:
The problem of local maxima arises because Hill-Climbing
makes irrevocable decisions at each point in search space.

A search that uses one or more items of domain-specific
knowledge to traverse state-space Is called heuristic search. A
Heuristic is a rule of thumb, and may not be guaranteed to
succeed, but it is useful in most cases.

Heuristic search works the same way as hill-climbing except
the next node to be expanded is selected among all possible
nodes, not just the successors of the current state.

An Algorithm for Heuristic Search:

1.

w

Create a search graph G, consisting solely of the start node S. Put S on a
list called open.

. Create a list called closed, which is initially empty.
. Loop: If open is empty, exit with fail.
. Select the first node from open, remove it from open and put it on

closed. Call this node n.

. If success(n) = true, then exit with success (to find the solution trace

back fromntos.)

. Expand node n, generating the set, M, of its successors, and put them in

G as successors of n.

. Establish a pointer to n from those members of M which are not already

in G (that is not already in open or closed). Add these members to
open. For those members of M which are on closed and their children,
determine if their back pointers should be changed, and if so change.

. Reorder the list open according to heuristic merit of each element.
. Go to Loop.

List Open
4
5

10
11

List Closed
S
6
3
2

> 1

15

Bdari

T T
Toou o m

i

b B |

rf—F

LT

T A
m S
L) L]

e T ey
LLCI I
E— -

-3
T
e om iw

rm oo

g ——

m RN

Level of search

g(n) =
1
2183
1|64 fs(:‘)tzj a(n) =0
7i5
State space -
generated In 7 =t A
- 3 State b Stat State d oy
heuristic E | qoos | He] FEs [1]ele] FiEE OO
7|5 7|6]5 Al |
search of the -
8-puzzle *2Ts 8 E A0E
State e [l State f Stateg g(n)=2
L fle) =5 F1814| has P12 W=e
716 7 5 71615
/”J\\ T~ -
,7 = \\ “H‘H
o \ -
2 i . -
- HE 2[8]3 - HE 2 3-
2| 1|4| Stateh [7| 1[4 |Statei | 1]g]|4]| State] 118|4]| Statek g(n)=3
TS| =6 b =7 o] =5 et W=7
6
12]3
State | =4
K fu)afs)
7]l6|s
7 / \\“L
1]2[3 2
Stat State n g(n)=5
2 41 qm =5 240 f(n) = 7
7]6]|s 6

open and closed
as they appear
after the third
Iteration of
heuristic search

Spenst

i Slate b
v flby =4

[y =Ty [] [r—

]
L= =

State d
f(d) =6

State 1
flg} =6

Evaluation Functions

We use the function f(n) to evaluate the promise of node n.

f(n) must be the estimate of the cost of a minimal cost path from
the start node to a goal node constrained to go through node n. fis
then used to order the nodes in open in step 8 of the previous
algorithm.

Designing Optimal Evaluation Functions:
Let K(n;, n;) be the actual cost of a minimal cost path between two

arbitrary nodes n; and n;. Then for a particular goal node t,, K(n, t;) gives
the minimal cost path from n to that goal node.

Let
h*(n) = min K(n, t)
thus h*(n) is an optimal path cost from n to a goal.

Similarly
g*(n) = K(s, n)
cost from start node to node n.

then

f*(n) = g*(n) + h*(n)
will be an evaluation function which at any node n gives us the cost of an
optimal path from s to a goal node constrained to go through n.

To design an evaluation function, develop one which looks like

f(n) = g(n) + h(n)
and estimates the components of * well.

An obvious choice of estimate for g*(n):

g(n) = X arc-costs while tracing from n to s on the best path
found so far.

=>g(n) >=g*(n)

Question:
For what value of f(n) will we produce breadth-first search?

Claim:

If h is a lower bound on h* (that is, if h(n) =< h*(n) for all
nodes) then the heuristic search algorithm will be guaranteed
to find an optimal path to a goal, If one exists. => Admissible

Recall:

A search i1s admissible if for any graph, it always terminates
In an optimal path from s to a goal node whenever a path
from s to a goal node exists.

10

Proof Steps:

1. Show that the algorithm terminates whenever a goal node
IS accessible.

2. Show that it terminates by finding a goal node.
3. Show that it terminates with an optimal path to a goal node.

An Important Result:

At anytime before A* terminates, there exists on open a node
n’ that is on an optimal path from S to a goal node with f(n’)
<=f*(S)

Another Important Result:

For any node n selected for expansion by heuristic search,
f(n)<=r*(S)

11

Comparing HS Algorithms

Let us assume we have two versions of H. search, one with
f,(n) = g,(n) + hy(n), and one with f,(n) = g,(n) + h,(n).

Now assume that h, and h, are both lower bounds on h*, we
say that HS2 is more informed than HS1, if for all non-goal
nodes h,(n) > h,(n).

= You can show that if the implicit graph is searched by both
algorithms, then at termination if node n was expanded by
HS2, it was also expanded by HS1. Thus HS1 always
expands as many or more nodes than HS2.

12

