ECE 566

Knowledge Systems Engineering

Syllabus

Credits: 3 units
Instructor: Dr. Michael Marefat
Office/Email: ECE356G, marefat@ece.arizona.edu
Office Hours: Tuesdays and Thursdays 3:00 -4:00 pm, and other times by appointment. Please send email to marefat@ece.arizona.edu

Objectives: Review and in depth investigation of fundamental techniques in engineering of knowledge systems.

Contents

MODULE I

1. Search Methods
 Depth-first Search
 Breadth-first Search
 Heuristic Search
 Hill Climbing

2. Constraints, Constraint Networks, Constraint Satisfaction
 Node and arc Consistency, Compound Labeling
 Constraint Satisfaction
 Problem Reduction
 Look ahead
 Back Jumping
 Interval Constraints, Interval calculus
 Algorithms for Interval Constraint Satisfaction

3. Knowledge Representation and inference in first order logic

 First Order Logic
 Matching and Unification,
Rule Firing, forward and backward chaining
Search

MODULE II
1. Automated Planning and Problem Solving
 Total Order problem solvers
 Least Commitment Planning
 Hierarchical Problem solving
 Application in Process Planning and Manufacturing

2. Structured Knowledge Representation
 Frames, Objects, Semantic Networks
 First Order Logic Correspondence
 Matching
 Mechanical Inference
 Defaults, Inheritance

3. Distributed Knowledge Systems
 Blackboard Architecture,
 Control Mechanism and Coordination
 Distributed Agent Systems
 Knowledge Sharing

MODULE III
1. Certainty Factors
 Certainty Factor Combination
 Implementation in Mycin System

2. Bayesian Probabilistic Networks
 Fundamentals from Probability Theory
 Likelihood Vectors
 Conditional Probability Matrices
 Hierarchical Propagation of Evidence
 Computational Algorithms for General Networks

3. Dempster-Shafer Theory of Evidence
 Belief Interval Representations for uncertainty
 Evidence Accumulation and Propagation
 Algorithms for fast Computation
Requirements and Grading

The requirements in this course include
• 3-4 projects which include programming.
• Two class examinations
• One semester project with a report.
• Each student is expected to do a survey project and prepare a semester report. A topic in knowledge systems (instructor approved) will be provided for survey.

The following will be the basis for grading:

<table>
<thead>
<tr>
<th>Assignments (3)</th>
<th>30 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Project (1)</td>
<td>30 %</td>
</tr>
<tr>
<td>Exams (2)</td>
<td>40 %</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100 %</td>
</tr>
</tbody>
</table>