
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 12, DECEMBER 1996 875

Improving Speed and Productivity
of Software Development:

A Global Survey of Software Developers
Joseph D. Blackburn, Gary D. Scudder, Member, /E€€, and Luk N. Van Wassenhove

Abstract-Time is an essential measure of performance in software development because time delays tend to fall directly to the
bottom line. To address this issue, this research seeks to distinguish time-based software development practices: those managerial
actions that result in faster development speed and higher productivity. This study is based upon a survey of software management
practices in Western Europe and builds upon an earlier study we carried out in the United States and Japan. We measure the extent
to which managers in the United States, Japan, and Europe differ in their management of software projects and also determine the
tools, technology, and practices that separate fast and slow developers in Western Europe.

Index Terms-Software engineering, software development, global performance comparisons, software speed and productivity,
management factors, empirical research, Europe, Japan, and the United States.

+
1 INTRODUCTION

IME is an essential measure of performance in software T development. For commercial software, such as
spreadsheets and operating systems, market share erodes
rapidly with time because customers will not wait for a de-
layed product when alternatives are readily available. In
consumer electronics or telecommunications equipment,
where software is designed in parallel with hardware, proj-
ect delays often result in market entry with a less attractive
product. Software tends to lie on the critical path and when
the development of software features misses the product
launch date, the product enters the market without the
features. Time delays in software and low productivity tend
to fall right to the bottom line.

When time is a critical performance metric, most soft-
ware organizations fare poorly because software projects
are routinely late and over budget [ll. The penalties of be-
ing late in a competitive market, when acceptable substi-
tutes are available, can be devastating: Ashton-Tate, a PC
database software leader, lost its command of the market
because it took too long to complete a new version of
dBase. After the CEO departed and the company was sold,
the new owners underestimated the time required to finish
the new version, ultimately scrapped it, and started over
121. More recently, IBMs release of its PowerPC-based ma-
chines were late to market due to software delays [3]. Al-
though the results of late-to-market entries with "off-the-

1.0. Blackburn and G.D. Scudder are with the Owen Graduate School of
Management, Vanderbilt University, Nashville, T N 37203.
E-mail: (blackbjl, scudderg)@ctruax.uanderbilt.edu.
L.N. Van Wassenhove is with Technology Management Area, European
Institute of Business Administration, INSEAD, Boulevard de Constance,
77305 Fontainebleau Cedex, France. E-mail: wassenhove@insead.fr.

Manuscript received Oct. 12,1995; revised Oct. 4,1996.
Recommended for acceptance by B. Littlewood.
For information on obtaining reprints of this article, please send e-mail to:
transse@computer.org, and reference IEEECS Log Number S95099.

shelf" software are more visible, the penalties for slow de-
livery of products with embedded software can be no less
severe. Consumer electronics manufacturers, facing annual
model introduction deadlines, release a product, but are
often missing features which might further differentiate
that product in the marketplace. A manager from a Japa-
nese copier company told us that the introduction of one of
their products was delayed for over one year in the United
States while software was modified. A project manager at a
German telecommunications company said "We introduce
product updates on a nine-month cycle: Every nine months,
the train leaves the station and if the (software) features
aren't ready, the train leaves without them." In addition to
the penalties meted out by the market, project delays create
inescapable deadline pressure, which often results in de-
fective products rushed out the door and, subsequently,
unhappy customers. Dissatisfied customers can diminish
the sales of current products through word-of-mouth and
are unlikely to purchase future product releases.

This research addresses these problems by discerning the
management practices that result in faster, more productive,
software development, which we call time-based software
development. For other forms of product development
where this theme is well established, a number of principles
have been advanced for managing the time-to-market proc-
ess: determining precise customer specifications up front,
concurrent engineering with co-located, cross-functional
teams, etc. (see for example, Blackburn [41, Stalk and Hout
[5] , and Smith and Reinertsen [6]). Yet software is often
viewed, at least by software managers, as different. They
claim that writing software is an art, not a science, and must
be managed as a craft, if it can be managed at all.

An objective of this research is to measure the extent to
which practices found to be successful in reducing develop-
ment time or improving productivity for nonsoftware prod-
ucts, such as concurrent enpeering, are applicable to the

0098-5589/96$05.00 01 996 IEEE

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

mailto:scudderg)@ctruax.uanderbilt.edu
mailto:wassenhove@insead.fr
mailto:transse@computer.org

876 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL 22, NO 12, DECEMBER 1996

management of the software process. Although there may be
significant differences between software and hardware, we
contend that software, as an industry, has become too large,
too important and too tightly linked with hardware to be
treated as an unmanageable problem child or an "add-on" to
be programmed after hardware has been designed.

A study which considers issues of productivity and
quality in software was carried out by Curtis, Krasner, and
Iscoe [7]. One of the authors, Luk N. Van Wassenhove, has
participated in a study of European software productivity
within a specific application area [8].

This research is based primarily on surveys of software
management practices in Western Europe, Japan, and the
United States. We build upon, and make comparisons
(Section 2) with, earlier studies of software managers that
we carried out in the United States and Japan in 1992 and
1993 (191, [lo], [ll])' plus field interviews conducted in 1992
with product development managers in Europe [12]. The
United States and Japan sample consisted of 49 completed
surveys. Where comparisons are made, the surveys asked
identical questions. However, in the European survey, we
were able to ask additional questions relating to productiv-
ity and team size and were able to obtain a larger sample
size. Consequently, the analysis in Sections 3 and 4 of this
paper are based solely on the European data.

Our surveys addressed an important question concern-
ing managerial actions to improve software processes.

1) To what extent do managers in the United States,
Japan and Europe differ in their direction of software
development activities?

In addition to these questions, the European surveys were
structured to address the following additional question:

1) What management actions accelerate software devel-

2) What management actions support higher productiv-

The distinction we make in questions 2 and 3 between the
rate of change in development speed and productivity is an
important one. Development speed and productivity are not
the same because low productivity organizations can be
quicker to market by throwing more human resources-
armies of programmers-at the project. However, Brooks
1131 conjectures that such efforts are futile because throwing
more bodies at a project, particularly in the latter stages, ac-
tually can extend the development time. There are many
factors affecting productivity that are beyond a given man-
ager's (or even the firm's) control, such as complexity of task,
project size, and whether hardware design is also involved.
Although a firm may appear productive by posting high
lines-of-code (LOC) productivity numbers, development cy-
cle times may also be static and not changing rapidly. A firm
with more daunting problems and with apparent low pro-
ductivity may, in fact, be ramping up their speed dramati-
cally. In this research we will attempt to understand the ex-
tent to which similar management practices enhance speed

opment speed?

ity?

1 Reference 191 addresses the Umted States and Japan research in greater
detail The research presented here links our European data with these
earlier data.

and productivity in software. Through comparisons with our
previous research, we also determine if significant differences
exlst in software management by global region, what consti-
tutes best practice, and where it is conducted.

To initiate the European survey, we used a mailing list of
managers in software-related industries supplied by IN-
SEAD, a leading European management school, in Fon-
tainebleau, France. From that list the names of 623 manag-
ers in software-related industries were selected. Only larger
firms were selected; for firms outside of France, we
screened out all firms with fewer than 200 employees and
less than $200 million in annual sales; since the list con-
tained a preponderance of French firms, the screening lev-
els for French firms were somewhat higher. As a result,
about two-thirds of the sample were drawn roughly
equally from firms in France, the United Kingdom, and
Germany, with the remainder distributed among other
countries in the European Union. The total response rate
was 27.3% or 170 responses. Of these, 72 were replies de-
clining to participate, leaving 98 or 15.7% usable responses.

The survey first asked respondents to describe a recently
completed software project: the type of project, language
used, procedures to manage and monitor the process, and
performance measures. We then asked them to supply
quantitative information about the project in five areas:

1) project size and productivity over time;
2) allocation of time, effort and team size among project

phases;
3) degree of newness of project (from minor revision to

completely new);
4) the effectiveness of different tools and techniques for

time compressing the de ent process;
5) stages of process in whi reductions have been

achieved.

2 GLO5AL COMPARIS
MANAGEMENT PRACTIC

Comparing sample results
we were struck more by t
On average, firms in Japan, the United States, and Europe
allocate time to the various stages of a project and effort in
terms of man-months per s roughly the same pro-
portions. Fig. 1 presents a r y-region comparison of
the percentage of development cycle
phase of the project. In all the regio
about 15% of the elapsed time in the cu
and the planning and specifications stage. The only signifi-
cant difference in time allocation (at the 0.05 level) is be-
tween Japan and Europe in the coding and implementation
stage where the European firms devote an average 29% of
the time and the Japanes 2%. Fig. 2 shows how ef-
fort (in percent of total man-months) is allocated
across the different softw

Comparison of Fig. 2
age of effort in the earl
percentage of elapsed ti
locate fewer resources t
the effort grows steadily from planning and specifications
through coding and implementation. Japanese firms devote

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

BLACKBURN ET AL.: IMPROVING SPEED AND PRODUCTIVITY OF SOFTWARE DEVELOPMENT, A GLOBAL SURVEY OF SOFTWARE DEVELOPERS 877

30 I

20

Fig. 1. Percentage of time in development stage.

40

35

30

25

20

15

10

5

0

more effort than their European counterparts in the plan-
ning/specification process and less effort in coding/imple-
mentation (both differences are significant at the 0.05 level).
This result echoes an observation frequently made about
Japanese product development practices: Their teams
spend more time in planning and, consequently, less in
execution of the detailed design work.

In the surveys, we asked respondents to consider a re-
cently-completed project and to estimate the duration of the
project if it had been undertaken five years earlier. That is,
we asked for the respondents’ estimates of their rate of
change in product development speed. Most indicated that
they were now faster; a similar project would have taken
longer if attempted five years previously. The average per-
centage reduction in development time reported in the
European sample was 27%. Although this estimate is based

Fig. 2. Percentage of development effort by stage

on perceptions and is clearly subject to bias on the part of
respondents wanting to show improvement, the value is
remarkably consistent with our earlier surveys carried out
in the United States and Japan, in which the average im-
provement in development time was 28%. In our analysis,
consistency is important because bias, per se, is not a major
concern: we are interested in relative, not absolute, levels of
improvement. That is, we partition the sample into firms
that are on a fast rate of change in development speed and
those that are slower and then isolate significant differences
between the samples. So we only require that the firms be
roughly consistent in their estimates.

We also asked respondents, “To what extent were the
following factors useful in reducing the overall software
development time for the project?” The 11 factors were cho-
sen from those that have been identified in the literature:

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL 22, NO 12, DECEMBER 1996

The use of prototyping. Prototypes generate customer
input by demonstrating to the user how the proposed
software will work;
Better customer specifications initially. Time spent learn-
ing what the customer wants or needs up front should
reduce the frequency of specification changes later in
the project;
The use of CASE tools. These tools are promoted in the
software engineering literature as productivity en-
hancing technology, which shrinks development time;
Concurrent development of stages or modules. Parallel, or
overlapping, design activities should reduce devel-
opment time;
Less rework or recodzng. Improved first pass quality
should compress project completion time;
Improved prolect team management. In development,
cross-functional teams tend to outperform the func-
tional, ”over-the-wall” approach,
Better testing strategies. Software testing developed
prior to, and in parallel with, product design should
minimize the rework required to fix problems discov-
ered late in the prolect and in the field;

A ,

Reuse of code or modules. Reusing previously-tested
code improves productivity, and thus, development
time, by reducing the need to create new code;
Changes in module size andlor lznkages. Smaller modules
or more standard interfaces speed coding and testing
by supporting parallel development;

10) Improvements in communication between team members.
High band-width information exchange among a
cross-functional team supports overlapping activities
and prevents errors due to misunderstanding;

11) Better programmers or software engineers. Hiring the best
people and supporting them with training enhances
productivity and speed.

We asked respondents to rank these 11 factors on a 1 to 5
scale from 1 = Not at all to 5 = Very Helpful. In addition,
the participants were asked: To the extent that the factors
were useful in reducing development time, in which stages
of the project were the reductions achieved? If you had de-
veloped the same software product five years ago, how
long would the project have taken?

The averages of the importance assessments of the 11
factors, shown in Fig. 3, compare the results of the Euro-
pean survey with those from earlier surveys in the United
States and Japan. Although the project management factors
receive roughly the same weightings in terms of their effect
on reducing product development times, there are some
significant differences. Reuse is viewed as more important
in the United States sample; the Japanese firms place a
lower average importance weight on prototyping and cus-
tomer specifications.

”People factors” seem to dominate ”tools and techniques.”
In the European sample, the three highest-rated factors are
better customer specifications, communications and better
programmers. The lowest values are given to changing mod-
ule size and/or linkages and surprisingly low weightings are
associated with CASE tools and technology in all three sam-
ples (the United States firms rate CASE tools significantly
lower in importance than European firms). Although much

of the literature and popular press extols the importance of
new tools and technology for enhancing software develop-
ment, the perception of users is that these tools have a rela-
tively minor effect on product development time. Yeh [14]
has observed that ” ... heavy investment in CASE technology
has delivered disappoi
that CASE tools support the
i.e., sequential engineering.” managers sug-
gested that increasing progr and the need to
deal mth people issu
use the tools effectively.

Averages, by obscuri es between high and
low performers, only tell story. But which proj-
ect management factors r a difference in devel-
opment speed and hat matters is the ac-
tivities that separate the firms that are accelerating their
development time from the rest of the pack. What different
things are done by the fast movers? Our analysis of data
from our European survey attempts to isolate the drivers of
change as described in the next two sections.

3 ACCELERATING PRODUCT DEVELOPMENT SPEED
In this section, we seek to identify the specific activities that a
firm should stress to shorten their development cycles. To do
this, we examine the correlations between the percentage
reduction in development time (over the past five years) and
the actions that software managers take to reduce cycle time.
The results indicate that in the allocation of time and effort,
project managers should use a similar approach for produc-
tivity and cycle time reduction. The strongest implication
from ths analysis is the i of customer require-
ments. This theme of ”get t what your customers
want” is stated often in the duct development lit-
erature, and these data provi evidence that the fast-
track software firms are follo

3.1 Allocation of Effort

The firms improving their development speed at the fastest
rate actually spend more elapsed time and more effort in the
customer requirements stage of the project- that is, deter-
mining what the customer wants in the software before
proceeding into high-level planning, designing and coding.
These firms spend significantly less time in the testing and
integration stage of developm

We partitioned the sample o two groups based on de-
velopment speed, fast firms (Group F) had improved their
development speed by greater than 25% (over the past five
years) and slower firms (Group S) had development speed
improvements of 25% or less. Fig. 4 shows how these two
groups of firms differ in the percentage allocation of time
and effort across development stages. For example, the
faster firms devote an average 18% of their development
cycle time and 14% of their man-hours effort to determining
customer requirements. The slower firms expend about
one-half the effort in determining customer requirements.
(These differences are significant at the 0.05 level). On the
other hand, the faster firms spend less time and effort on
average in all of the other stages ‘of development and sig-
nificantly less time in the final, testing/integration stage.

Stages

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

BLACKBURN ET AL.: IMPROVING SPEED AND PRODUCTIVITY OF SOFTWARE DEVELOPMENT: A GLOBAL SURVEY OF SOFTWARE DEVELOPERS
879

4 5

4

3 5

3

2 5

2

1 5

1

0 5

0

Fig. 3. Importance of project management factors in reducing development time.

4u uu

35 00

30 00

25 00

20 0 0

15 no

10 00

5 on

0 00

n

Fig. 4. Percentage of project time and effort by development stage (fast vs. slow developers).

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

880 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL 22, NO

TABLE 1
SPEARMAN CORRELATION COEFFICIENTS-EUROPEAN SAMPLE

12, DECEMBER 1996

Project
Factors

% of time by stage.
customer requirements

planning & specifications
detal design

testing/integration
coding

% of effort by stage:
customer requirements
planning & specifications

detail design
coding

testinghtegrakon

team size by stage:
customer requirements

planning & specificatzons
detail design

coding
testingiintegration

maximum team size

Correlation with
% Reduction in

Development Time

0.154 (0.13)

-0.1789 (0.09)**
-0.177 (0.87)
0.0013 (0.99)
-0.208 (0.05)

Correlation with
LQC/CMM Productivitv

0.303 (0.02)

-0.035 (0 79)
-0.029 (0.82)
-0.172 (0.18)
-0.105 (0.42)

0.245 (0.05)
-0.05 (0.69)
0 001 (0.99)
-0.18 (0.16)
0 006 (0 96)

0.093 (0.47)
-0.22 (0.09)**
-0.133 (0.30)
-0.17 (0.19)
0.089 (0.492

0.211 (0.09)**
-0.13 (0.24)
-0.149 (0.283)
-0.109 (0.329)
-0.045 (0.69)

0.0798 (0.476)
-0.13 (0.24)
-0.149 (0.183)

-0.11 (0.33)
-0.045 (0.59
-0.040 (0.724)

-0.0265 (0.829)
-0.173 (0.10)**
0.078 (0.46)
0.366 (0.004)
0.309 (0.016)

0.284 (0.025)
-0.21 (O.l@)*+
0.14 (0.27)

Project Size (in LOG)
Project Duration
Project Newness

LOClCMM Productivity
LQCDWM Productivity

Proiect Nanarrement Factors

Frototyping
Customer Specifications

CASE Tools
Concurrent Engineering

Less Rework
Project Team Mgt
Testing Strategies

Reuse
Module Size and #
Communications

Better Peoplefiogrammers

0.31 (0.003)
0.045 (0.664)
0.083 (0.40)
0.082 (0.44)
0.318 (0.002)
0.152 (5.152)
-0.20 (0.06)**
0.16 (0.129)
0.012 (0.91)
0.058 (0.58)

0.405 (0.0001)

Significance level given within (.) Boldface indicates factors significant at 0 05 level or better “*Indicates significance at 0 10 OY better

Table 1 presents the Spearman correlations between re-
duction in development speed and time and effort spent in
the various stages and their significance levels. These cor-
relations confirm what the sample averages show: high
improvement rates in development speed tend to be posi-
tively correlated with more time and effort in the customer
requirements and negatively correlated with time spent in
the testing/integration stage. Taken together, these results
suggest, as a policy measure, that more time spent up front
defining customer requirements forestalls the need for
testing later.

3.2 Effects of Team Size
Does team size affect development speed? Fig. 5 displays
the average team sizes by project stage and maximum team
size for the fast and slow development groups. This figure
shows that, except for the customer requirements stage, the
faster firms tend to have smaller teams. These results sup-
port the observation often made in the new product devel-
opment literature that small, ”tiger teams” tend to be more

effective. Unlike the prese
sertions about small team s
than anecdotal evidence.

The larger team size
by the faster firms pro
initial stage is a critical
resources in the early
project to learning wha
as an investment, not just a cost.

3.3 Analysis of the 11 Project Management Factors
The Spearman correlation coefficients (shown in Table 1)’
between the importance of the 11 project management
factors for reducing development time and the reported

tuation, however, these as-
e rarely supported by other

ustomer requirements stage
dditional evidence that the
the process. Devoting more
f a software development
rs want should be viewed

2. Table 1 presents Spearman rank order correlations Siege1 and Castel-
Ian 1151 pomt out that, for measures of association between ordlnal vari-
ables, when there is the potential for many ranlangs ties, the Gamma G
statistic may be more appropriate We calculated Gamma G statistics for
correlation between percent reduction in development time and the 11
project management factors, and the results are virtually identical to the
Spearman coefficients in value and sigruficance level

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

BLACKBURN ET AL.: IMPROVING SPEED AND PRODUCTIVITY OF SOFTWARE DEVELOPMENT: A GLOBAL SURVEY OF SOFTWARE DEVELOPERS 881

18 00

16 00

14 00

12 00

10 00

8 00

6 00

4 00

2 00

0 00

percent decrease in development time provide additional
insight into the actions taken in faster firms. These correla-
tions indicate that the firms with large reported decreases
in development time have accomplished that through an
increased dependence on prototyping, better programmers,
and less rework. Note that large improvements in develop-
ment time are (weakly) negatively correlated with better
testing strategies. This suggests that the firms reporting the
greatest improvements in development time perhaps have
fewer problems with rework and therefore are less depend-
ent on testing; the firms reporting benefits from testing
strategies may be relying on testing to fix problems.

Fig. 3 and the correlations in Table 1 suggest that CASE
tools are perceived to have an insignificant effect on reduc-
tion in development time. Since much has been written in the
literature and the popular press about CASE tools and tech-
nology and their effect on productivity, we expected the cor-
relation to be strong, positive, and significant. The same
could be said for reuse. Neither of these appear to be as pow-
erful a driver for reducing project cycle time as prototyping,
reducing rework and better programmers. If CASE tools are
contributing to reduced cycle times, then the effect is either
overshadowed by other factors or is obscured by the in-
creasing complexity of the development task.

Taken together with the accumulated evidence on the
importance of the customer requirements activity, the cor-
relations of percent reduction in development time provide
persuasive evidence that, for faster cycle times, it is critical
to ”do it right the first time.” In software, prototyping is a

- a

Fig. 5. Average team size by project stage (fast vs. slow developers).

useful tool for the process of hammering out a clear set of
specifications with users by getting preliminary feedback
on ”features and feel” without having a complete design.
Less rework is probably more a consequence of getting
project specifications right than a cause. One plausible in-
terpretation for what respondents mean by better pro-
grammers is people who get the job done right.

Talented people are essential to a fast development
process. These results emphasize a fact of life in develop-
ment: virtually no amount of management technique and
team organization can overcome a lack of talented design-
ers and coders. This is not a new observation, but is a recur-
ring theme in the literature on innovation, research and
development. The lesson for managers is that, since these
talented people are so important to the time-to-market
process, the firm should make a special effort to identify,
reward and make heroes of their best people. Making most
effective use of development talent must be a key concern
for software managers.

4 SOFTWARE PRODUCTIVITY DRIVERS
The software research literature teems with attempts to ex-
plain, model and predict software productivity, to find reli-
able metrics and to account for differences due to language
and type of application (see Maxwell et al. 181 for a recent
study and a review of prior literature). Our purpose is not
to develop another model to predict software productivity;
our dual purposes are:

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

a82 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL 22, NO. 12, DECEMBER 1996

1) to determine the management practices that support
higher productivity by examining the differences in
procedures between low and high productivity firms;

2) to provide supporting evidence for the conclusions of
the prior section about factors important in reducing
cycle time.

Although the results in the prior section are based on the
respondents’ perceptions of cycle time reductions, this sec-
tion provides direct, quantitative measures of productivity;
this provides a validity check on whether similar actions
support both productivity and cycle time reductions.

In examining productivity, we used lines of code (LOC)
as a measure of program size simply because it is the most
common measure, one with which most of our survey re-
spondents are comfortable and could be used to describe
the size of their project. [Although function points have
been suggested by Jones [16] as a better measure, only one
respondent reported program size in terms of function
points.] In the European sample, of the 98 respondents, 59
were able to provide both project effort in man-months du-
ration by stage and program size in terms of lines of code,
so that we could compute Lines-of-Code per Total Man
Months (LOC/TMM) and Lines-of-Code per Man Month of
Coding Effort (LOC/MMC) as measures of productivity.
Not surprisingly, the correlations between these productiv-
ity measures and different project descriptors were quite
similar because LOC/TMM and LOC/MMC tend to be
highly correlated with each other (in our sample, the cor-
relation was 0.66) and project management factors that im-
prove coding productivity tend to improve total project
productivity This analysis will focus on LOC/MMC; the
conclusions reached also apply to LOC/TMM productivity
because the results we obtained were similar, but not re-
ported in detail herF.

The reported productivity values exhibited a large vari-
ance. The high variation in productivity, as measured by
LOC, should not be surprising to those familiar with the
literature on software productivity measures. LOC means
different things to different people and, in our survey, it
was interpreted by the respondent as they would typically
use it within their company Since we did not speclfy how
LOC must be measured, readers are cautioned not to read
too much into the absolute LOC values reported. While it
cannot be verified, it is unlikely that comment lines were
included in the reported values. Also contributing to the
variation 111 reported LOC values was the diversity of soft-
ware projects: the sample includes small business applica-
tions, large telecommunications projects, and software de-
signed in parallel with hardware design. Programs ranged
in size from 1,200 lines of code up to 6,000,000. In addition,
there are 27 different programming languages and the proj-
ects were carried out in 12 different countries in Europe.

But what explains differences in productimty across
firms? To uncover the project management factors driving
productivity, we computed correlations between LOC/
MMC and the various project factors elicited m the survey. In
the sections that follow, we analyze the effects of program
size, language, allocation of time and effort, and team size.

4.1 Productivity and Development Time
Are the firms with faster development cycles more produc-
tive? If firms are crunching development time by throwing
human resources at the project, then productivity would
diminish. On the contrary, the faster firms tend to be more
productive. Fig. 6 displays the average productivity meas-
ures for the fast firms (Group F) and slow (Group S), and
the productivity of the fast firms is significantly higher (at
the 0.10 level). This suggests that the actions that these
firms take to reduce development time also support pro-
ductivity gains. Time-to-market targets and lower devel-
opment cost are congruent objectives.

LOC/Coding MM

I I

0 00 1000 00 2000 00 30

Fig 6 Average productivity of fas

30 4000 00 50 10 6000 00

j. slow developers

r

4.2 Project Characteristics and Productivity
Table 1 displays the statistical correlations between LOC/
MMC productivity and different project descriptors relat-
ing to the size and complexity of the project: project dura-
tion, size in terms of lines of code, number of modules,
newness of the project and team size during the project. The
correlation between productivity and project duration is
negative and significant at the 0.10 level: in this sample,
productivity decreases with project duration. A similar re-
sult was obtained in an earlier study conducted by one of
the authors for the European Space Agency [SI.

The relationship is less clear between productivity and
project size in terms of lines of code As given in Table 1,
the correlations between project size (as measured by lines
of code) and productivity are positive. This result, while in
accord with the findings in [SI, does not agree with that
found in some other studies ([17], [18], for example). Some

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

BLACKBURN ET AL.: IMPROVING SPEED AND PRODUCTIVITY OF SOFTWARE DEVELOPMENT: A GLOBAL SURVEY OF SOFTWARE DEVELOPERS
883

authors argue that software productivity should diminish
with project size because communication problems and
other forms of project complexity tend to increase with the
size of the project; increasing complexity creates efficiency
losses resulting in lower productivity. Our data do not nec-
essarily refute that argument because each of our sample
points represents a different firm, and the firms in our
sample with large projects may have better procedures in
place for managing software projects than the small ones.
For a better test of the size/productivity hypothesis, a sam-
ple of projects of different sizes within a single firm should
be analyzed.

Survey respondents assessed project newness by ticking
a scale ranging from 0% to 100% (completely new). The
correlation between newness and productivity and between
newness and percent reduction in development time were
not significant.

4.3 Team Size
What is the effect of team size on productivity? Table 1
shows the correlation between LOC/MMC and team size in
different stages of the development process. Our results on
team size tend to support the conventional view that larger
teams diminish productivity because of inefficiencies cre-
ated by the difficulty of communicating within a large
number of people. Brooks [13] has argued that communi-
cation demands increase in proportion to the square of the
size of the team. The correlation between maximum team
size and lines-of-code productivity is weakly negative.
There is, for example, a significant negative correlation with
the team size in testing: Firms that must do a lot of testing
are less productive. They are spending an above average
amount of time looking for, finding and fixing errors. The
only slightly positive correlation between LOC/MMC and
team size is in the customer requirements stage. To risk a
generalization, the high productivity firms tend to have a
larger team devoted to determining customer requirements
(which, if done right, may make coding more productive
and less testing and correction necessary). Further evidence
in support of this assertion about the importance of cus-
tomer requirements is provided in subsequent analysis.

4.4 Allocation of Time in Project Stages
The correlation between LOC/MMC and the percentage of
project time spent in the various stages is displayed in Ta-
ble l. Here the only stage with a positive correlation, one
that is strong and significant, is the time spent on customer
requirements. Correlations between LOC/MMC produc-
tivity and the allocation of effort across stages provides
additional confirmation of the importance of the initial
customer requirements stage: the most productive firms
allocate significantly more effort to this stage of the process.

Viewed together, the correlation with team size and allo-
cation of time in stages tell an interesting story about the
importance of the initial stages of a project to coding pro-
ductivity. Note in Table 1 that, while most of the correla-
tions with team size are negative, but not significant, the
only positive value is the size of the team working on cus-
tomer requirements. Our conclusion from this is that firms
allocating more effort up front-in determining customer
requirements and in high-level planning-are getting a

payoff in higher productivity. The link between time spent
in the early stages of the project and time saved in coding
may seem tenuous, but the evidence suggests that how the
early stages are managed is a critical determinant of coding
productivity. The lesson is: spend more time up front to
save time and effort later on.

4.5 Language
In the European survey the choice of programming lan-
guage does not correlate with productivity, either in
LOC/MMC or LOC/TMM. The languages used ranged
from low-level assembler code to high-level languages such
as C++. Of these, C was the most prevalent, used by 25 (out
of 96) of the respondents. After scaling the language on an
ordinal scale to denote level of complexity (from 1 = lowest
level to 10 = highest level), the correlations with productiv-
ity were slightly negative, but not significant. This was
somewhat unexpected because, in an earlier study by one
of the co-authors [8] , a significant correlation was found
between language and productivity, with higher levels of
language (Ada and Pascal) yielding higher lines-of-code
productivity. However, this earlier study did not include
projects with higher level languages such as C and C++ (as
was the case in the current study). Because of the prepon-
derance of these higher level languages in our survey, we
may be observing evidence of the effect described by Jones
[16]: "When programs are written in higher level lan-
guages, their apparent productivity expressed in source
code per time unit is lower than for similar applications
written in lower level languages."

5 CONCLUSIONS
Software is an enigma: It pervades our lives and our prod-
ucts in increasing proportions, yet we struggle to meet proj-
ect deadlines and to remain within budget. Many practitio-
ners argue that software is an arcane art and resist attempts
to structure and manage the process. Skeptics also suggest
that attempts to develop guidelines would be overwhelmed
by differences among projects, firms, and cultures.

This research suggests that the skeptics are wrong. Glob-
ally, firms appear to be remarkably similar in the way they
structure the software process. Despite the ink devoted to
Japanese "software factories," the Japanese firms, on aver-
age, organize their software efforts in ways that mirror
United States and European firms. Productivity and rates of
improvement do not seem to be "culture-dependent"-they
are at comparable levels in each of these regions. World-
wide similarities in management of the process are more
apparent than the differences.

Important differences emerge, however, when firms are
segmented by development performance instead of by
country, or culture. The firms on a "fast track in improv-
ing time-to-market manage their processes in significantly
different ways and with better results than the slower firms.
Moreover, similar actions support both speed and produc-
tivity, so managers do not have to treat these two perform-
ance measures as a tradeoff.

The development manager's most powerful lever is the
initial activity of ascertaining customer requirements. Fast

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

884 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL 22, NO 12, DECEMBER 1996

developers devote more time in the early stages of the project
to learning what customers want in a software product and
to shaping the specifications to meet those needs. Not only
do the fastest firms spend more time and effort on user (or
customer) requirements, but the firms with highest produc-
tivity follow the same actions (of course, many firms fall into
both groups). Prototyping, which provides early feedback
from customers on product features and user interfaces, is a
technique more widely-used by the fast developers than the
slow. "Getting closer to the customer" has been such a fre-
quent admonition in the business press that it has become a
trite cliche. However, this research confirms that, in software
development, the advice about learning the requirements of
the user is more than a cliche; it is a way of becoming faster
and more productive than your competitors.

Time and effort spent on prototyping and other tech-
niques to fine-tune customer requirements pay off in a
shorter development cycle. Our results strongly suggest
that many of these time benefits are due to less rework.
Much of the rework, or redesign, in development is caused
by changes in specifications and, to the extent that these
changes can be avoided, precious time is saved.

Team size is another important factor that distinguishes
the fast software developers. The firms reporting the great-
est increase in development speed also tend to have smaller
teams-in every stage of the process except one, customer
requirements. Given the importance that these firms place
on customer requirements, this result is also not surprising.

The insignificance of CASE technologies in our surveys
is intriguing and somewhat mystifying. Enormous sums
have been poured into the acquisition of tools to support
design productivity at every stage of the process-from
systems for configuration management to object-oriented
languages and libraries. These tools have clearly had an
effect on productivity, but development managers' percep-
tions are that there are other, more important productivity
drivers. We speculate that increasing project complexity
and size are obscuring the advantages that CASE tools
bring, but our research has been unable to confirm this. If
true, then more sophisticated research instruments are
needed to prove it.

Given a choice between investing in people or technol-
ogy, this research suggests that talented people are more
important This echoes the findings of researchers on other
types of product development that creative people are the
real silver bullet (for example, Curtis, Krasner, and Iscoe
[SI). The other levers of productivity make a difference at
the margin, but they cannot overcome a weakness in hu-
man capital.

Although much remains to be learned about the process of
software development, our results chart a clear path for
change. The techniques used by the faster software develop-
ers closely resemble the prescriptions proposed for speeding
up other forms of product development. Our research sug-
gests that the similarities between software and hardware
development may be more important than the differences.
The causes, and the cures, for tune delays appear to be the
same. Continued research to improve the development proc-
ess should benefit both hard and software.

ACKNOWLEDGMENT
The authors wish to thank the referees for their many help-
ful comments on our paper. Professors Blackburn and
Scudder were supported, in part, by\the Dean's Summer
Research Fund at the Owen Graduate School of Manage-
ment, Vanderbilt University and under Grant No AFOSR-
91-0440 from the Air Force Office of Scientific Research.

REFERENCES
M Van Genuchten "Why is Software Late? An Empirical Study of
Reasons for Delay in Software Development," IEEE Trans Soft-
ware Eng , vol 17, no 6, pp 582-590,1991
G P Zachary, "How Ashton-Tate Lost Its Leadership in PC Soft-
ware Arena," The Wall Street J , Apr 10,1990.
B Zeigler, "New IBM PCs Are Superfast, but Might Be Too Late,"
Wall Street J , June 16,1995
J D Blackburn, Time-Based Compeiilion The Next Battle Ground zn
American Manufacturing Homewood, Ill Business One Irwin,
1991
G Stalk and T Hout, Competzng Against Time, New York Free
Press, 1990
P Smth and D Reinertsen, Developzng ProdiLcts in Half the Time
New York Van Nostrand Reinhold, 1991
B Curtis, H Krasner, and N Iscoe ,"A Field Study of the Soft-
ware Design Process for Large Systems," Comm ACM, vol 31,
no 11, pp 1,268-1,287,1988
K Maxwell, L Van Wassenhove, and S Dutta "Software Devel-
opment Productivity of European Space, Military and Industrial
Applicahons," IEEE Trans. Software Eng., Oct 1996
J Blackburn, G Scudder, L. Van Wassenhove, and C Hill, "Time-
Based Software Development," Integrated Manufacturing Systems,
vol 7 , no 2,1996

[lo] J. Blackburn, S Baylor, and G Scudder, "Software Development
in Japan Some Preliminaiy Findings," Working Paper #92-57,
Vanderbilt Univ , Owen Graduate School of Management,
Sept 1992.

1111 G. Scudder and C Hill, "Software Development in Japan Some
Fmdings from Some Major Companies," Vanderbilt Univ , Owen
Graduate School of Management Working Paper #93-60, Aug
1993.

I121 J. Blackburn, G Hoedemaker, and L Van Wassenhove,
"Interviews with Product Development Managers," Working Pa-
per #Y2-56, Vanderbilt Univ , Owen Graduate School of Manage-
ment, 1992.

1131 F Brooks, TJze Mythical Man-Monfh Essoys OM Sofizciare Eng Lon-
don: Addison-Wesley, 1975

[14] R. Yeh, "Notes on Concurrent Engineering," IEEE Trans Knowl-
edge and Data Eng., vol. 4, no. 5, pp. 407414,1992

[15] S. Siege1 and N J Castellan Jr , Nonparametric Statzstzcs for the Be-
havzovul Sczences, New York. McGraw-Hill, pp. 291-298, 1988.

[16] C Jones, Assessment and Control of Software Risks hnglewood
Cliffs, N J Prentice Hall, 1994

[17] L. Putnam and W Myers, Measures for Excellence Reliable Software
on Time, within Budget Englewood Cliffs, N J Prentice Hall, 1992

[18] S McConnell, Code Complete A Practzcal Handbook of Software COM-
structzon Microsoft Press, 1993

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

BLACKBURN ET AL.: IMPROVING SPEED AND PRODUCTIVITY OF SOFTWARE DEVELOPMENT: A GLOBAL SURVEY OF SOFTWARE DEVELOPERS 885

Joseph D. Blackburn received his PhD degree
in operations research from Stanford University,
an MS degree from the University of Wisconsin
and a BS degree from Vanderbilt University. He
is the James A. Speyer professor of operations
management in the Owen Graduate School of
Management, Vanderbilt University. He has
served on the faculties of the Graduate School of
Business at the University of Chicago and Bos-
ton University and was a visiting professor at the
Graduate School of Business, Stanford Univer-

sity. His book Time-Based Competition: The Next Battleground in
American Manufacturing was published in 1990 by Business One-
Irwin. He has published over 40 papers and proceedings articles in the
areas of time-based competition, operations strategy, new product
forecasting models, and material requirements planning.

Gary D. Scudder (M'91) has a bachelors and
masters degree in industrial engineering from
Purdue University and a PhD degree in industrial
engineering from Stanford University. He is pres-
ently a professor of management in the Owen
Graduate School of Management, Vanderbilt Uni-
versity. His teaching and research interests focus
upon manufacturing strategy, the strategic man-
agement of technology and innovation, and
managing new product design and development
processes. Dr. Scudder has also been published

in the areas of manufacturing scheduling and innovation management.
He is currently on the editorial advisory board of the Journal of Opera-
tions Management and the board of directors of the Operations Man-
agement Association. His current research efforts are focused on im-
proving the speed and quality of new product development, with par-
ticular emphasis on software development.

Luk N. Van Wassenhove received the MS de-
grees in mechanical engineering and industrial
management, and the PhD degree in operations
management and operations research from the
Katholieke Universiteit, Leuven, Belgium. He is
presentlya full professor and area coordinator in
the Technology Management Department at
INSEAD, Fontainebleau, France. His prior work
experience includes appointments at the Katho-
lieke Universiteit and Erasmus Universiteit, Rot-
terdam, The Netherlands. His research focus is

on integrated operations management, time compression in new prod-
uct development, quality, continual improvement, and learning at the
factory level.

Authorized licensed use limited to: The University of Arizona. Downloaded on January 9, 2009 at 12:25 from IEEE Xplore. Restrictions apply.

