RADIOMETRY OF LAMBERTIAN SOURCES

Relate M_{λ} and L_{λ}

- Valuable exercise in spherical coordinate integration

- Area element of sphere, radius r

$$
\begin{aligned}
d A_{2} & =r d \phi r \sin \theta d \theta \\
& =r^{2} \sin \theta d \theta d \phi
\end{aligned}
$$

- Start with radiance to get flux within area $d A_{2}$

$$
\begin{aligned}
L(\theta, \phi) & =\frac{d^{2} \Phi}{d A_{1} \cos \theta d \Omega} \\
d^{2} \Phi & =L(\theta, \phi) \cos \theta d A_{1} d \Omega \\
& =L(\theta, \phi) \cos \theta d A_{1} \frac{d A_{2}}{r^{2}} \\
& =L(\theta, \phi) \cos \theta d A_{1} \sin \theta d \theta d \phi
\end{aligned}
$$

- Total flux in hemisphere above source

$$
\Phi=d A_{1} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi / 2} L(\theta, \phi) \cos \theta \sin \theta d \theta
$$

Now, in general $L=L(\theta, \phi)$, but for a Lambertian source

$L=$ constant

- Therefore

$$
\begin{aligned}
\Phi & =\left.d A_{1} 2 \pi L \frac{(\sin \theta)^{2}}{2}\right|_{0} ^{\pi / 2} \\
& =\pi L d A_{1}
\end{aligned}
$$

Radiant exitance definition

$$
\begin{aligned}
M & =\frac{\Phi}{d A_{1}} \\
& =\pi L
\end{aligned}
$$

Include spectral variation

$$
\begin{aligned}
M_{\lambda} & =\pi L_{\lambda} \\
\text { or } \quad L_{\lambda} & =M_{\lambda} / \pi
\end{aligned}
$$

- Can think of π as having units of $s r$, which cancels the s^{1} units of L
- Note: $M \neq 2 \pi L$, as one might guess since hemisphere is $2 \pi s r$ Why?

TRANSMITTANCE

Defined as ratio of transmitted output flux to input flux

REFLECTANCE

Three types:

Most natural surfaces are approximately Lambertian

for $\theta<40^{\circ}$, snow and sand for $\theta<60^{\circ}$

- At larger θ, natural surfaces tend to become directional

Reflectance of Lambertian surface

- Reflectance defined similarly to transmittance

$$
\rho(\lambda)=\Phi_{\lambda}^{\text {out }} / \Phi_{\lambda}^{\text {in }}
$$

- From earlier derivation

$$
\Phi_{\lambda}^{\text {out }}=\pi L_{\lambda} d A_{1}
$$

and

$$
\Phi_{\lambda}^{i n}=E_{\lambda} d A_{1}
$$

Therefore,

$$
\rho(\lambda)=\pi L_{\lambda} / E_{\lambda}, \quad 0 \leq \rho(\lambda) \leq 1
$$

Given reflectance of surface and incident irrradiance, can get radiance

$$
L_{\lambda}=\rho(\lambda) E_{\lambda} / \pi
$$

BAND-AVERAGED IRRADIANCE

Cascade spectral quantitites from source-to-surface-tosurface ...

$$
E_{\lambda}=(\text { geometric factors }) \cdot L_{\lambda} \cdot t_{1}(\lambda) \cdot t_{2}(\lambda) \ldots \rho_{1}(\lambda) \ldots
$$

- until arriving at a spectrally-integrating element, i.e. a detector,

$$
E_{\text {total }}=\int E_{\lambda} \cdot S(\lambda) d \lambda
$$

where $S(\lambda)$ is the detector's spectral sensitivity
Example of a specific detector $S(\lambda)$ is human vision system sensitivity V(λ)
$E_{\text {total }}$ is the effective irradiance, because it is what is

detected and measured

Band-averaged spectral irradiance

$$
E_{b}=\frac{E_{\text {total }}}{\int_{0}^{\infty} S(\lambda) d \lambda}
$$

RADIOMETRY OF OPTICAL SYSTEMS

telescope

- collects light from point source
- "light bucket"

- assume:
- source and detector on optical axis
- object-to-sensor distance much greater than aperture
diameter z_{0} »d
- no transmission losses
- irradiance at lens aperture $E=I / z_{0}^{2}$ (inverse square law)
- flux collected by aperture

$$
\begin{aligned}
\Phi_{c} & =E \cdot A_{\text {aperture }} \\
& =E \cdot \frac{\pi d^{2}}{4} \\
& =\frac{I}{z_{0}^{2}} \cdot \frac{\pi d^{2}}{4}
\end{aligned}
$$

- flux at detector (no losses) $\Phi_{i}=\Phi_{c}$
- proportional to radiant intensity of source
- proportional to square of aperture diameter
- inversely proportional to square of object-to-sensor distance

What is the only way to increase the amount of light collected by a telescope?

Camera

- assume:
- Lambertian source and detector plane normal to optical axis
- magnification

$$
m=h_{i} / h_{o}=z_{i} / z_{o}
$$

- flux collected by aperture

$$
\begin{aligned}
\Phi_{c} & =L_{o} A_{o} \Omega \\
& =L_{o} A_{o} \frac{A}{z_{o}^{2}} \\
& =\frac{L_{o} A_{o}}{z_{o}^{2}} \cdot \frac{\pi d^{2}}{4}
\end{aligned}
$$

- NOTE: similarity to "light bucket" equation
- flux at detector (no losses) $\Phi_{i}=\Phi_{c}$
- irradiance at detector

$$
\begin{aligned}
E_{i} & =\Phi_{c} / A_{i} \\
& =\frac{\Phi_{c}}{m^{2} A_{o}} \\
& =L_{o} \frac{\pi d^{2}}{m^{2} 4 z_{o}^{2}}
\end{aligned}
$$

- by definition of magnification (see Geometrical Optics)

$$
E_{i}=L_{o} \frac{\pi d^{2}}{4 z_{i}^{2}}
$$

- define effective f-number N of sensor, $N=z_{i} / d$
- then,

$$
E_{i}=L_{o} \frac{\pi}{4 N^{2}} \quad \text { Camera Equation }
$$

- NOTE:
- proportional to radiance of source
- inversely proportional to square of sensor f-number
- does not depend on z_{0}, the source-to-sensor distance
- f-number Ntypically preset on camera to 1.4, 2, 2.8, 4, 5.6, 8, 11, 16, 22

What is rationale for the above preset values of N ?

Camera imaging reflecting object

- Irradiance on object E
- Reflectance of object ρ_{o}

- From earlier derivation:

$$
E_{i}=\frac{E_{o} \rho}{4 N^{2}}
$$

Camera imaging extended reflecting object

- $\operatorname{Cos}^{4}{ }^{4}$ Law applies:

$$
E_{i}(\theta)=\frac{E_{o} \rho}{4 N^{2}}(\cos \theta)^{4}
$$

With object irradiance and reflectance
fixed, what is the only way to increase the

amount of light collected by a camera?

