ECE 304 Spring ’05 Exam 4 Solutions

NOTE: IN ALL CASES
1. Solve the problem on scratch paper
2. Once you understand your solution, put your answer on the answer sheet
3. Follow your answer with an outline of your solution. No points for answer without an outline of the solution. A mish-mash of computation is not an acceptable outline.

PRINT your name at the top of each answer sheet

Assume \(V_{TH} = 25.864 \text{ mV} \) in all problems and maximum collector-base forward bias in saturation is \(V_{CB} = 0 \text{ V} \). Where \(V_{BE} \) is needed, evaluate it using \(V_{BE} = V_{TH} l_n(I_C/I_S) \).

Problem 1: Miller capacitance and Miller approximation

![Circuit Diagram](image)

For the circuit in Figure 1, assume \(C_J = C_{JE} + \mu C_T/V_{TH} \) and \(C_{\mu} = C_{JC} \). Find the formulas for the following, and then evaluate them:

1. Determine the amplitudes of the maximum output signal upswing and downswing, and what mode changes limit them.

 Answer:
 - The upswing is limited by saturation of Q1 when \(V_O = 14.29 \text{ V} \), an upswing of 8.29V.
 - The downswing is limited by saturation of Q3 when \(V_O = 713 \text{ mV} \), a downswing of 5.28V.

2. Determine the Miller capacitance using the Miller approximation.

 Answer:
 - \(C_M = C_{\mu} \frac{R_B}{R_O + R_B} (1 + g_m R_O) \). \(C_M = 3.75 \text{ nF} \).

 Outline:
 - The Miller capacitance is \(C_M = C_{\mu}(1-V_O/V_s) \) and in the Miller approximation is evaluated using the midband value of \(V_O/V_s \). To find \(V_O/V_s \) we use the output side of the midband circuit, as shown in Figure 2 below.
Using KCL at the output node in Figure 2 we find

\[\frac{V_{\pi} - V_O}{R_B} = g_m V_{\pi} + \frac{V_O}{R_O}. \]

Collecting terms,

\[\frac{V_O}{V_{\pi}} = -\left(g_m R_B - 1\right) \frac{R_O}{R_O + R_B}, \]
\[1 - \frac{V_O}{V_{\pi}} = \frac{R_B}{R_O + R_B} \left(1 + g_m R_O \right); \]
\[C_M = C_\mu \frac{R_B}{R_O + R_B} \left(1 + g_m R_O \right). \]

Evaluating, \(r_{op} = 10.72 \, k\Omega, \) \(r_{on} = 10.53 \, k\Omega; \) \(1 + g_m R_O = 2054, \) \(R_b/(R_O+R_b) = 0.913, \) \(C_M = 3.75 \, nF. \)

3. Determine the upper 3dB corner frequency. **Hint:** find a “Miller resistance” \(R_M \) in the input side of the circuit for \(R_B \) as well as a Miller capacitance for \(C_\mu. \)

Answer:

\[f_C = \frac{1}{2\pi \left(C_\mu + C_M \left(R_S / R_M \right) \right)} = 1.9 \, MHz \]

with \(C_M = C_\mu \frac{R_B}{R_O + R_B} \left(1 + g_m R_O \right) \) and \(R_M = \frac{R_O + R_B}{1 + g_m R_O}. \)

Outline:

\[\left(j\omega C_\mu + \frac{1}{R_B}\right) \left(V_{\pi} - V_O\right) \]
\[\left(j\omega C_\mu + \frac{1}{R_B}\right) \left(V_{\pi} - V_O\right) \]

FIGURE 3 Finding the Miller equivalents

The current flowing to the right at the top of the left-hand circuit in Figure 3 is made to agree with that at the top of the right-hand circuit by making \(C_M \) and \(R_M \) satisfy EQ. 3 below.

\[C_M = C_\mu \left(1 - \frac{V_O}{V_{\pi}}\right) \]
\[\frac{1}{R_M} = \frac{\left(1 - \frac{V_O}{V_{\pi}}\right) \frac{V_O}{R_B}}. \]

Evaluating \(R_M \) using \(1 - V_O/V_{\pi} \), we find EQ. 4 below.
Closed book, calculators required, Monday, March 28: 8AM-10AM

EQ. 4

\[R_M = \left(\frac{R_O + R_B}{1 + g_m R_O} \right). \]

Using the circuit on the right side of Figure 3, analysis of the frequency dependence is made as shown in Figure 4 below.

![Figure 4](image)

FIGURE 4
Finding the frequency dependence of \(V_\pi / V_O \)

Equating the currents at the top node of Figure 4, we find \(V_\pi / V_{AC} \):

EQ. 5

\[
\frac{V_\pi}{V_{AC}} = \left(\frac{R_S / r_\pi / R_M}{R_S} \right) \frac{1}{1 + j \omega (C_\pi + C_M)(R_S / r_\pi / R_M)}.
\]

As we know the input circuit sets the corner frequency, the corner frequency is

EQ. 6

\[f_C = \frac{1}{2 \pi (C_\pi + C_M)(R_S / r_\pi / R_M)} \]

with \(C_M \) and \(R_M \) from EQ. 2 and EQ. 4. We find \(f_C = 1.9 \) MHz. (PSPICE says 3.7 MHz because it allows \(C_M \) to change with bias to \(C_M = 1 \) pF).

4. Determine the frequency at which the Miller approximation breaks down

Answer: The frequency where \(1 - V_O / V_\pi \) drops by 3dB is \(f_M = \frac{1}{2 \pi C_M (R_O / R_B)} = 16.4 \) MHz.

Outline: We look at the output side of the circuit in Figure 5 and use KCL at the collector to find EQ. 7 below.

![Figure 5](image)

FIGURE 5
Finding the frequency dependence of \(V_O / V_\pi \)
Closed book, calculators required, Monday, March 28: 8AM-10AM

EQ. 7

\[
\left(j\omega C_\mu + \frac{1}{R_B} \right) (V_\pi - V_O) = g_m V_\pi + \frac{V_O}{R_O}.
\]

Collecting terms we find 1–V_O/V_\pi as given in EQ. 8 below.

EQ. 8

\[
1 - \frac{V_O}{V_\pi} = \frac{R_B}{R_B} \left(\frac{1 - g_m R_B + j\omega C_\mu R_B}{1 + j\omega C_\mu (R_O \parallel R_B)} \right),
\]

suggesting the Miller capacitance will show frequency dependence for frequencies at or above the frequency f_M given in EQ. 9 below.

EQ. 9

\[
f_M = \frac{1}{2\pi C_\mu (R_O \parallel R_B)} = 16.4 \text{ MHz}
\]

5. If R_R were reduced to 1 kΩ, discuss qualitatively what would happen to the 3dB corner frequency?
 Answer: If R_R is reduced the mirror current increases, and the current in Q3 also must increase. A larger current lowers R_O (because r_O varies inversely as the current), but the gain g_mR_O does not change much because g_m increases linearly with current. That is,

 \[
g_m R_O = \frac{I_C}{V_{TH}} (V_{CB} + V_{AF}) = \frac{V_{CB} + V_{AF}}{V_{TH}},
\]

 which is independent of I_C. Therefore, Miller capacitance and Miller R_M won't change much either. So any change in the bandwidth due to changing I_C should not be large. PSPICE suggests about a 10% increase.

6. If R_R were reduced to 1 kΩ, discuss qualitatively what would happen to the amplitudes of the maximum output signal upswing and downswing?
 Answer: If R_R is reduced the mirror current increases. To obtain more current from Q3, its V_CB must increase, raising the value of V_O. Consequently the maximum output upswing would decrease and the maximum output downswing would increase. Incidentally, the increased reverse bias of the CB junction lowers C_\mu of Q3, which in turn reduces the Miller capacitance, and so increases the bandwidth. This is the source of the bandwidth increase in PSPICE mentioned in Part 5 above.
Problem 2: Time-constant method

The circuit of Figure 6 has an AC signal applied on one side only, at the base of Q1. The base of Q2 is biased with a DC source to make the currents in Q1 and Q2 the same at zero AC input, as shown. For the circuit in Figure 6, assume \(C_p = C_{JE} + I_C T_F/V_{TH} \) and \(C_j = C_{JC} \). Find formulas for the following, and then evaluate them numerically:

1. Using the method of open- or short-circuit time constants (whichever is appropriate), determine the upper 3dB corner frequency of the amplifier in Figure 6 for the case \(R_C = 0 \Omega \) (as shown in Figure 6).
 Answer: \(f_c = 5.71 \text{ MHz} \); formula is found below.

2. Using the method of open- or short-circuit time constants (whichever is appropriate), determine the upper 3dB corner frequency of the amplifier in Figure 6 for \(R_C = 500 \Omega \) (not shown in Figure 6). Because \(V_B \) maintains the same Q-point currents shown in Figure 6, the Q-point collector voltage of Q1 changes to match that of Q2.
 Answer: \(f_c = 1.67 \text{ MHz} \); formula derived below.

Outline: Evaluations of the resistances is easily done in PSpice, as shown in Figure 7 - Figure 11.
Closed book, calculators required, Monday, March 28: 8AM-10AM

FIGURE 7
Resistance for $C_{\pi 1}$ is $R_{C\pi 1} = 170.9 \, \Omega$; the collector currents are dictated by the base currents through the CCCS’s, so the collector resistors are not involved.

FIGURE 8
Resistance for $C_{\pi 2}$ is $R_{C\pi 2} = 2.124 \, \Omega$

FIGURE 9
Resistance for $C_{\mu 2}$ is $R_{C\mu 2} = 333.3 \, \Omega$

PARAMETERS:

- $R_S = 1k$
- $B_F = 100$
- $I_C = 10mA$
- $V_{__TH} = 25.864mV$
- $rPI = (B_F*V_{_TH}/I_C)$
- $R_L = 1k$
- $R_C = 500$

FIGURE 10

Resistance for $C_{\mu 1}$ is $R_{C_{\mu 1}} = 33.8 \, k\Omega$

Time constant is $\tau = C_{\pi}(170.9 \, \Omega + 2.124 \, \Omega) + C_{\mu}(333.3 \, \Omega + 33.8 \, k\Omega)$. $C_{\pi} = C_{JE} + I_C \tau/F/V_{TH} = 156.7 \, pF$, $C_{\mu} = C_{JE} = 2 \, pF \rightarrow \tau = 95.36 \, ns \rightarrow f_C = 1.67 \, MHz$.

If the left-hand collector resistor is removed, Figure 10 is replaced by Figure 11 below.

FIGURE 11

Resistance for C_{μ} with R_C for Q1 removed is $R_{C_{\mu}} = 340.9 \, \Omega$

Using Figure 11, $\tau = C_{\pi}(170.9 \, \Omega + 2.124 \, \Omega) + C_{\mu}(333.3 \, \Omega + 340.9 \, \Omega) = 1.35 \, ns \rightarrow f_C = 5.59 \, MHz$.

FORMULAS

The above figures show the basic circuits that must be solved and provide the numerical results. Below, the formulas for the time constants obtained by solving these circuits are derived.
From Figure 12, KVL provides

\[
(l_x - I_B)R_S - I_Br_\pi + \left(\frac{l_x - (\beta + 1)I_B}{\beta + 1}\right)r_\pi = 0; \quad I_B = \frac{R_S + r_E}{2r_\pi + R_S}l_x.
\]

\[
V_X = l_B r_\pi \rightarrow R_{C_{x1}} = \frac{R_S + r_E}{2r_\pi + R_S}r_\pi.
\]

From Figure 13,

\[
\left(\frac{l_x - (\beta + 1)I_B}{\beta + 1}\right)(r_\pi + R_S) - I_Br_\pi = 0; \quad I_B = \frac{R_S/(\beta + 1) + r_E}{2r_\pi + R_S}l_x.
\]

\[
V_X = l_B r_\pi \rightarrow R_{C_{x2}} = \frac{R_S + r_E}{2r_\pi + R_S}r_\pi.
\]
FIGURE 14

Finding R_{C_1}

KVL along the bottom of Figure 14 provides

EQ. 15

$$I_B = I_X \frac{R_S}{2r_\pi + R_S}.$$

The voltage on the left of I_X is $I_X(2r_\pi//R_S)$. The voltage on the right of I_X is $-(I_X+\beta I_B)R_C$. Therefore, **EQ. 16**

$$V_X = I_X(2r_\pi//R_S) + (I_X+\beta I_B)R_C = I_X(R_S//2r_\pi) + \left(1 + \beta \frac{R_S}{2r_\pi + R_S}\right)R_C \rightarrow$$

$$R_{C_{U1}} = \left(R_S//2r_\pi\right) + \left(1 + \beta \frac{R_S}{2r_\pi + R_S}\right)R_C.$$

In the case that R_C is zero (circuit of Figure 6) we have **EQ. 17**

$$R_{C_{U1}} = \left(R_S//2r_\pi\right).$$

FIGURE 15

Finding $R_{C_{U2}}$

KVL along the bottom of Figure 15 shows that $I_B = 0$ A. Therefore, $R_{C_{U2}}$ is given by **EQ. 18** below.
Closed book, calculators required, Monday, March 28: 8AM-10AM

\[R_{C_{\mu 2}} = \left(\frac{R_C}{R_L} \right) \]

The total time constant is then

\[\tau = C_{\pi}(R_{C_{\mu 1}} + R_{C_{\mu 2}}) + C_{\mu}(R_{C_{\pi 1}} + R_{C_{\mu 2}}) \]

which becomes in the case of Figure 6

\[\tau = C_{\pi}\left(\frac{R_S(\tau_{r_0} + \tau_{g}) + 2\tau_{r_0}}{2\tau_{r_0} + R_S} \right) + C_{\mu}\left(\frac{R_C}{R_L} \right) + \frac{R_S}{(2\tau_{r_0})} \]

and in the case of the circuit like Figure 6 but with the extra \(R_C \) on the input side,

\[\tau = C_{\pi}\left(\frac{R_S(\tau_{r_0} + \tau_{g}) + 2\tau_{r_0}}{2\tau_{r_0} + R_S} \right) + C_{\mu}\left(\frac{R_C}{R_L} \right) + \frac{R_S}{(2\tau_{r_0})} + \frac{1 + \beta \frac{R_S}{R_S + 2\tau_{r_0}}}{R_C} \]

The difference in time constants is

\[\Delta \tau = C_{\mu} \left(\frac{1 + \beta \frac{R_S}{R_S + 2\tau_{r_0}}}{R_C} \right) = C_{\mu} \left(\frac{1}{\frac{R_S}{R_S + 2\tau_{r_0}}} \right) = C_{\mu} \left(\frac{R_S}{R_S + 2\tau_{r_0}} \right) \]

which is the delay due to the Miller capacitance \(C_M \) which sees resistance \(R_S/(2\tau_{r_0}) \).

3. Compare the two bandwidths, and discuss why they are different.

Answer: From the results of Parts 1 and 2 the bandwidth of the diff amp with no collector resistor on the input side is 5.6 MHz compared to 1.7 MHz, the difference being due to the change in time constant of \(C_{\mu} \) on the input side. The increase in time constant is due to the Miller effect when \(R_C \) is inserted, because the added resistor means a time varying voltage is applied on both sides of \(C_{\mu} \), which means there is an AC gain \(V_O/V_{TH} \) across this capacitor, magnifying it (the Miller effect: \(C_M = C_{\mu}(1-V_O/V_{TH}) \)). Without the resistor, one side of the input \(C_{\mu} \) is at AC ground, and the time constant of \(C_{\mu} \) is greatly reduced.

4. Would your discussion of Part 3 change if \(\tau_F = 400 \) ns instead of \(\tau_F = 400 \) ps? Why or why not?

Answer: Yes, it would change because the time constant introduced by \(C_{\mu} \) would then be so large, due to the increased value of \(C_{\mu} \) from the \(I_C\tau_F/V_{TH} \) term, that the corner frequency is dictated by \(C_{\mu} \), not the Miller effect. In this case, both circuits will have the same corner frequency regardless of the presence or the absence of the collector resistor on the input side.