Gain and Phase Margin Problem

Problem
Select the frequency f_1 in the gain expression of EQ. 1 below to obtain a two-pole Butterworth step response for a voltage feedback amplifier with $\beta_{FB} = 10 \text{ mV/V}$.

EQ. 1

$$A_v(f) = \frac{A_v0}{\left(1 + j\frac{f}{f_1}\right)\left(1 + j\frac{f}{f_2}\right)\left(1 + j\frac{f}{f_3}\right)}.$$

The frequencies $f_2 = 10^6 \text{Hz}$ and $f_3 = 10^7 \text{Hz}$, and the low-frequency gain is $A_{v0} = 10^5 \text{ V/V}$. Also, determine the gain and phase margins of this amplifier.

Schematic
The PSPICE circuit for this amplifier is shown in Figure 1.

FIGURE 1

PSPICE representation of three-pole amplifier

Using the circuit of Figure 1 we can find the gain and phase plots, as shown in Figure 2 and Figure 3 below.
FIGURE 3
PSpice phase plots for open loop and closed loop amplifier; this plot determines the frequency f_{180} where the phase is -180°; phase margin (63°) is labeled with double arrow

Transient response

FIGURE 4
Step response of closed loop amplifier; time to first maximum is 0.98 μs and overshoot is 5.7%

The step response in Figure 4 can be compared with the two-pole estimates for a Butterworth design of $t_{\text{MAX}} = 1/(f_1 + f_2) = 1 \mu s$ and overshoot of 4.3%.

Design procedure
For a Butterworth response we require a time constant separation factor of $2\beta \text{FB}A_\nu_0$, so

\[\frac{t_1}{t_2} = \frac{f_2}{f_1} = 2\beta_{\text{FB}}A_\nu_0. \]

That is, $f_1 = f_2/(2 \times 10^{-2} \times 10^5) = 500$ Hz

We then draw the Bode plots for EQ. 1 with the poles f_1, f_2, f_3 that approximate Figure 2 and Figure 3, and determine the frequencies $f_{180_{\text{FB}}}$ and f_{180}. The gain and phase margins are then

\[\text{phase margin} = \arg\left(A_\nu(f_1/f_{\text{FB}})\right) - (-180^\circ) = 63^\circ \]

\[\text{EQ. 4} \]

\[\text{gain margin} = 20\log_{10}\left(\frac{1}{\beta_{\text{FB}}} \left| A_\nu(f_{180})\right|\right) = 26.9 \text{ dB} \]

The numerical work can be done very conveniently using a spreadsheet, as shown in Figure 5 below.
Open-Loop Amplifier

<table>
<thead>
<tr>
<th>Input</th>
<th>pi</th>
<th>3.1415926</th>
</tr>
</thead>
</table>
| A_v0 | 1.00E+05 | f_1/Bfb | 4.55E+05
| f_1 | 500 | f_180 | 3.16E+06
| f_2 | 1.00E+06 | f_3dB | 5.00E+02
| f_3 | 1.00E+07 | |
| C_1 | 1.00E-09 | |
| B_FB | 1.00E-02 | |

Feedback Amplifier

<table>
<thead>
<tr>
<th>Calculated</th>
<th>R_1</th>
<th>318309.89</th>
<th>Phase margin</th>
<th>63.00875</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_2</td>
<td>159.15495</td>
<td>Gain Margin (dB)</td>
<td>26.85318</td>
<td></td>
</tr>
<tr>
<td>R_3</td>
<td>15.915495</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A_v0 (dB) | 100
A_v (f_3dB) | 96.9897
A_vFB (f_3dB) | 36.9897

Phase=(ATAN2(1,Frequency/f_1)+ATAN2(1,Frequency/f_2)+ATAN2(1,Frequency/f_3))180/pi
Gain=A_v0/(SQRT(1+(Frequency/f_1)^2)*SQRT(1+(Frequency/f_2)^2)*SQRT(1+(Frequency/f_3)^2))

FIGURE 5
Spreadsheet for gain and phase margin calculations

With the spreadsheet of Figure 5 the frequencies $f_{1/\beta_{FB}}$ and f_{180} are readily found using GOAL SEEK to set the magnitude to $1/\beta_{FB}$ and the phase to -180° by varying the frequency.

Comment on the two-pole approximation

Figure 4 shows that the two-pole approximation to design for a Butterworth amplifier provides a good approximation for setting the lowest pole at f_1 provided the higher poles are not too close to f_2. In this example the overshoot in step response (Figure 4) isconstantly larger than Butterworth because the third pole makes the gain margin a little lower than for the two-pole system comprised of only of poles at f_1 and f_2. The time to maximum overshoot is very low nearly as expected.

If we move f_3 to very high frequency, the modified system approaches a two-pole system with phase margin 65.6°, a bit larger than our original system with 63° margin. So a two-pole estimate of phase margin is not a bad approximation, and accounts for the success of the two-pole Butterworth design.

However, the two-pole estimate of gain margin is terrible, as explained next. You may recall that a two-pole system is always stable, with $f_{180} = \infty$. Of course, no real amplifier has $f_{180} = \infty$, so this two-pole estimate of f_{180} is hopelessly inaccurate. Because the gain of any amplifier tends to zero at very high frequencies, the gain $\to 0$ as $f_{180} \to \infty$. That is, the poor estimate of f_{180} using a two-pole system makes the two-pole estimate of gain margin hopelessly inaccurate for any real amplifier ($\log_{10}(0) = -\infty$), even if the two-pole system approximates the gain curve quite well over a range of frequencies from low values to somewhere above the second pole.

For these reasons, it is more useful to focus on phase margin as a stability estimate when using a two-pole approximation, not gain margin.