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ChEE 201 
Fall 2005 

University of Arizona 
Computer Reading 4 

Taylor Series Approximations 
 

Students learned a little bit about errors in the last reading so we are now ready to discuss the Taylor Series 
approximation, which is often a very useful tool for transforming a complex non-linear function into a linear 
equation so we can solve systems of larger equations that have the same variables.  This technique is very useful in 
numerical methods, transport phenomena, and in chemical engineering controls.  In addition, the techniques from 
this section will be used when we discuss non-ideal gases in chapter 5 of Felder and Rousseau. 
 
Learning Objectives: 
At the end of this section, students will be able to: 
1) use the Taylor series expansion to represent a function as a linear expansion  
2) understand how the approximate relative error can be used to decide when they have included enough 
terms in their infinite series to have come close enough to a converged answer to stop adding new terms 
 
The Taylor series is extremely useful if you want to find the answer to a mathematical function but don't have a 
calculator.  It's also useful when you need to solve a complex or non-linear equation and can come up with a good 
guess for a starting point.  With that said, we could start off with a long boring derivation about where the Taylor 
series comes from.  Instead, let's jump in with the formula and describe what is happening: 
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Here, we will use xi to represent the value that we know the function at.  Let's say we wanted to know what the 
square root of 5 is.  Well, we could choose xi to be any number that we know the square root of, like xi = 1, 4, 9, etc.  
In this case, xi+1 = 5.  For this example, we'll set xi to 4, which is very close to xi+1.  Later on in this section, we'll see 
what happens when we change xi.   
 
We could use just the first term of the Taylor series approximation and we'd have: 
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So, here we're saying that the square root of 5 is close to 2.  Well, we know that's not right because the square root of 
five is slightly higher.  Let's now add the next term to our Taylor series approximation.  Recall that: 
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And now we evaluate this at xi to get: 
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Let's now plug our information into the Taylor series for the first two terms: 
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So, we've moved closer to what the final answer should be, but we probably aren't close enough to the final real 
answer to stop.  Let's now add the next term, which has the second derivative of the function in it.  We won't show 
quite as much math this time, but we find that our third derivative is: 
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We plug this in and evaluate it at xi = 4 to get the following: 

( )
( )2

2
3

45
!2

1

44

125.25 −−+≈  

where we just replaced the first two terms by what we had found in the previous step.  Now we are trying to do this 
by hand so we recall that: 
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Our Taylor series then becomes: 
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We could have used a calculator if we wanted to, but we didn't have to.  Notice that the first term was the largest of 
the three, while each successive term got smaller and smaller.  Let's now turn to our calculator and see how  we've 
done so far.  Our approximate answer after three terms is 2.234375.  Using our calculator, the square root of five is 
2.236067977.  Our true error is 0.001692, while the true fractional error is 0.000757, which is very good for not 
using a calculator until the final step.  If we added more terms, we wouldn't really improve our answer that much 
more so we could stop here.  If we didn't have the true answer to compare to, how would we know we could stop? 
 
Recall from the error discussion in the previous section that even if we don't know the true answer, we can calculate 
the approximate error and the approximate relative error.  We can't do it for the first term, but we can after finding 
the second and larger terms in the series.  After we added the first derivative term our errors were: 
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And after adding the second derivative term we found our errors were: 
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Recall that we said we can often choose a stopping criteria when the newest terms lead to a fractional error with an 
absolute value of 0.01-0.05, or around a few percent, depending on how important the accuracy is in our final 
number. 
 
Now that we have the basic mechanics of how to use a Taylor series approximation, including how to use the 
approximate relative error to stop when we think our answer is accurate enough, let's look at some of the other 
details of how to best use the Taylor series. 
 
Choosing xi wisely: 
The first caveat to remember when choosing xi is to choose it such that you know what the function equals for that 
value.  This is why we wouldn't have chosen xi to be 7...because we don't necessarily know what the square root of 
seven is!   
 
The farther xi is from xi+1 where we want to know the value, though, the longer it will take for our approximation to 
converge to an answer, requiring more terms.  Let's look at finding the square root of 5 by using xi values of 4, 9, 
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and 25.  We'll make a table that has the xi guess on the top of the columns while we calculate the function's value 
and approximate relative error as we go down the table.  This is shown here: 
 

xi  guess 4 9 25 
terms 

included value 
approximate 
relative error value 

approximate 
relative error value 

approximate 
relative error 

1 2.00000  3.00000  5.00000  
2 2.25000 0.11111 2.33333 -0.28571 3.00000 -0.66667 
3 2.23438 -0.00699 2.25926 -0.03279 2.60000 -0.15385 
4 2.23633 0.00087 2.24280 -0.00734 2.44000 -0.06557 
5 2.23602 -0.00014 2.23823 -0.00204 2.36000 -0.03390 

 
We see that when xi was close to xi+1 (4 with 5), we had very fast convergence and the approximate relative error 
quickly dropped to less than 0.01 by the third term.  In contrast, as we move xi farther from xi+1 and use 9, we see it 
takes another term to be added to get under 0.01.  And when we're even farther away at 25, we still haven't 
converged after five terms.   
 
So, you see that having xi and xi+1 close together helps us get to a solution faster.   
 
Being careful with math: 
It is very common for students to make errors when they are taking their derivatives and when they are putting all 
their results into their Taylor series formula.  So, here are some things that you should look out for: 

• Make sure you are taking the derivatives of the functions and NOT using the integrals instead 
• Be careful of your signs as you include them in your formulas 
• Don't forget to include the powers on the difference terms (xi+1-xi) 
• And don't forget to include your factorials in the denominator 

 
If you would like some practice, try the following problem: 
Find e1 without using a calculator. 
 
If you are having a hard time getting started, go through the following steps: 
1) Identify xi+1 
2) Choose an xi that you know the function for without using a calculator 
3) Take the first 2 to 3 derivatives 
4) Evaluate the derivatives with xi plugged in 
5) Compute the Taylor series terms 
6) Add up enough terms until your approximate relative error is less that 1% (0.01). 
 
There are three types of procedures that help engineers reach correct answers: 

� be methodical 
� be orderly in the way you organize information 
� check your work 

 
If you'd like to see how this is done, check the next page where you can fill in the blanks. 
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Fill in the following blanks: 
 
xi+1 =       xi = 
 
 
f(x) =     evaluated at xi =  
 
 
 
f'(x) =     evaluated at xi = 
 
 
 
 
f''(x) =      evaluated at xi = 
 
 
 
F(3)(x) =      evaluated at xi = 
 
 
 
Taylor series and the terms: 
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f(xi+1)= 
 
 
 
 
 
 
 
Final answer and error analysis: 
 
 
 
 
For the solution as worked out by the instructor, go to the next page and compare to your work here.  Keep in mind 
that all of the exercises in the readings are designed to help students master the material.  If a student comes to office 
hours with a question about Taylor series, they will be asked to produce this sheet and work through it so it can be 
used to help figure out where they are having problems.  
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xi+1 = 1      xi = 0 
 
 
f(x) = ex     evaluated at xi = 1 
 
 
 
f'(x) = ex     evaluated at xi = 1 
 
 
 
 
f''(x) = ex    evaluated at xi = 1 
 
 
 
F(3)(x) =  ex    evaluated at xi = 1 
 
 
 
Taylor series and the terms: 
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The actual answer is 2.71828 so we were getting pretty close 
 
Final answer and error analysis: (This part won't be filled in since you have worked through the errors on a 
homework already and should understand how to use them.) 
 
Now that you've read this section, you're ready to tackle Computer Homework 4 online. 
 


